Connected and Total Edge Domination in Boolean Function Graph $B(G, L(G), NINC)$ of A Graph

S. Muthammai1 and S. Dhanalakshmi2
Alagappa Government Arts College, Karaikudi1.
Government Arts College for Women(Autonomous), Pudukkottai.2

Abstract

For any graph G, let $V(G)$ and $E(G)$ denote the vertex set and edge set of G respectively. The Boolean function graph $B(G, L(G), NINC)$ of G is a graph with vertex set $V(G) \cup E(G)$ and two vertices in $B(G, L(G), NINC)$ are adjacent if and only if they correspond to two adjacent vertices of G, two adjacent edges of G or to a vertex and an edge not incident to it in G. For brevity, this graph is denoted by $B_1(G)$. In this paper, Connected edge domination and total edge domination numbers of Boolean Function Graph $B(G, L(G), NINC)$ of some standard graphs are obtained.

Keywords: Boolean Function graph, Edge Domination Number

1. INTRODUCTION

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let $V(G)$ and $E(G)$ denote its vertex set and edge set respectively. A subset D of V is called a dominating set of G, if every vertex not in D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality taken over all dominating sets of G. An edge e of a graph is said to be incident with the vertex v if v is an end vertex of e. In this case, it can also be said that v is incident with e.

A subset $F \subseteq E$ is called an edge dominating set of G, if every edge not in F is adjacent to some edge in F. The edge domination number $\gamma'(G)$ of G is the minimum cardinality taken over all edge dominating sets of G. An edge dominating set X of G is called a total edge dominating of G if the induced subgraph $\langle X \rangle$ has no isolated edges.

The total edge domination number $\gamma'_t(G)$ of G is the minimum cardinality taken over all of total edge dominating sets of G. An edge dominating set X of is called a connected edge dominating sets of G, if the induced subgraph $\langle X \rangle$ is connected. The connected edge domination number $\gamma'_c(G)$ of G is the minimum cardinality taken over all connected edge dominating sets of G. The concept of edge domination was introduced by Mitchell and Hedetniemi [6]. Arumugam and Velammal [1] have discussed edge domination number and edge domatic number. Vaidya and Pandit [7] determined edge domination number of middle graphs, total graphs and shadow graphs of P_n and C_n. For graph theoretic notations and terminology, Harary [2] is followed.
For a real x, \(\lfloor x \rfloor \) denotes the greatest integer less than or equal to x.

Theorem 1.1. [6] For any (p, q) graph G, \(\gamma' \leq \lfloor p/2 \rfloor \).

Theorem 1.2. [3] G and L(G) are induced subgraphs of \(B_3(G) \).

Theorem 1.3. [3] Number of vertices in \(B_1(G) \) is \(p+q \) and if \(d_i = \text{deg}_G(v_i), v_i \in V(G) \), then the number of edges in \(B_1(G) \) is \(q(p-2) + \frac{1}{2} \sum_{1 \leq i \leq p} d_i^2 \).

Theorem 1.4. [3] The degree of a vertex of G in \(B_2(G) \) is \(q \) and the degree of a vertex \(e' \) of L(G) in \(B_1(G) \) is \(\text{deg}_{B_1(G)}(e') + p - 2 \). Also if \(d^*(e') \) is the degree of a vertex e' of L(G) in \(B_1(G) \), then \(0 \leq d^*(e') \leq p+q-3 \). The lower bound is attained, if \(G \cong K_2 \) and the upper bound is attained, if \(G \cong K_{1,n} \) for \(n \geq 2 \).

Theorem 1.5. [3] \(B_3(G) \) is disconnected if and only if G is one of the following graphs: \(nK_1 \), \(K_2 \), \(2K_2 \) and \(K_2 \cup nK_1 \), for \(n \geq 1 \).

In this paper, connected edge domination numbers of Boolean Function Graph \(B(G, L(G), \text{NINC}) \) of some standard graphs are obtained.

2. Connected edge domination in B(G, L(G), NINC) of a Graph

In the following connected edge domination number of \(B_1(P_n) \), \(B_1(C_n) \), \(B_1(K_n) \), \(B_1(K_{1,n}) \) \(B_1(W_n) \) are found.

Theorem 2.1. For the Path \(P_n \) on vertices \((n \geq 4) \), \(\gamma'_C(B_1(P_n)) = 2n-3 \)

Proof: Let \(v_1, v_2, \ldots , v_n \) and \(e_{12}, e_{23}, \ldots , e_{n-1,n} \) be the vertices and edges of \(P_n \) respectively. Then \(v_1, v_2, \ldots , v_n, e_{12}, e_{23}, \ldots , e_{n-1,n} \in V(B_1(P_n)) \) where \(e_{i,i+1} = \{v_i, v_{i+1}\}, i = 1, 2, \ldots , n - 1 \). \(B_1(P_n) \) has \(2n-1 \) vertices and \(n^2 - n - 1 \) edges.

Let \(F_m = \{(v_i, v_j) / 1 \leq i \leq n, j \equiv (i+m) \mod (n-1), k \equiv i+(m+1) \mod (n-1)\} \) and \(F = (\bigcup_{m=1}^{n-1} F_m \cup \{(v_1, e_{1,n}), \{v_n, e_{n-1, n-1}\}\} \). Then \(B_1(P_n) = E(P_n) \cup E(P_{n-1}) \cup F \). If \(D' = \{(v_{i+1}, e_{i,i+1}), (e_{i,i+1}, e_{i,i+1,i+2})\} \cup \{(v_{n-1}, e_{12})\} \), then \(D' \subseteq E(B_1(P_n)) \). \(D' \) dominates edges of \(P_n, P_{n-1} \) and \(F \). \(D' \) is an edge dominating set of \(B_1(P_n) \). Also, \(<D'> \cong \mathbb{P}_{n-1}^+ \).

Therefore, \(D' \) is a connected edge dominating set of \(B_1(P_n) \) and hence \(\gamma'_C(B_1(P_n)) \leq |D'| = 2(n-2)+1 = 2n-3 \). Let \(D'' \) be a minimum edge dominating set of \(B_1(P_n) \). To dominate the edges of \(B_1(P_n) \). \(D'' \) contains at least \((n-2)\) edges of \(L(P_n) \) and hence \(|D'| \geq n-2+n-1 = 2n-3 \). Therefore, \(\gamma'_C(B_1(P_n)) = 2n-3 \).

Remark:[2.1] \(\gamma'_C(B_1(P_3)) = 3 \)

Theorem 2.2. For the Cycle \(C_n \) on \(n \) vertices \((n \geq 5)\) vertices, \(\gamma'_C(B_1(C_n)) = 2n-3 \).

Proof: Let \(v_1, v_2, \ldots , v_n \) be the vertices and \(e_{12}, e_{23}, \ldots , e_{n-1,n} \) be the edges of \(B_1(C_n) \) where \(e_{i,i+1} = \{v_i, v_{i+1}\}, i = 1, 2, \ldots , n - 1 \), \(e_{n,1} = \{v_n, v_1\} \). \(B_1(C_n) \) has \(2n \) vertices and \(n^2 \) edges.

Let \(F_m = \{(v_i, v_j) / 1 \leq i \leq n, j \equiv (i+m) \mod n, k \equiv (i+(m+1)) \mod n\}, e_{01} = e_{n1} \) and \(F = \bigcup_{m=1}^{n-1} F_m \). \(B_1(C_n) = E(2C_n) \cup F \cup E(B_1(C_n)) \). Let \(D' = \bigcup_{i=1}^{n-2} (\{v_i, e_{i,i+1}, e_{i,i+1,i+2}\}) \cup \{(v_1, e_{12})\} \). Then \(D' \) is a connected edge dominating set of \(B_1(C_n) \). Also, \(<D'> \cong \mathbb{P}_{n-1}^+ \). Therefore, \(D' \) is a connected edge dominating set of \(B_1(C_n) \).
\[\gamma_c'(B_2(C_n)) \leq |D'| = 2(n-2) + 1 = 2n - 3. \]

Let \(D'' \) be a minimum connected edge dominating set of \(B_1(C_n) \). \(D'' \) contains at least \((n-1) \) edges of \(F \) and \((n-2) \) edges of \(L(C_n) \). \(|D''| \geq 2n-3 \). Therefore, \(\gamma_c'(B_2(C_n)) = 2n-3 \).

Remark: 2.2

(i) \(\gamma_c'(B_1(C_3)) = 5 \)

(ii) \(\gamma_c'(B_1(C_4)) = 6 \)

Theorem 2.3. For the complete graph \(K_n \) on \(n \geq 5 \) vertices, \(\gamma_c'(B_2(K_n)) = (n+3)(n-2)/2 \).

Proof: Let \(v_1, v_2, \ldots, v_n \) be the vertices of \(K_n \) and \(E(K_n) = \{e_{ij} = (v_i,v_j) / 1 \leq i \leq n, 1 \leq j \leq n, i \neq j \} \). \(B_1(K_n) \) has \(n+1 \) vertices.

\(E(B_1(K_n)) = \{|E(K_n)| + |E(L(K_n))| + n(n-1)\} \)

\((n-2)/2 = n(n-1) (2n-3)/2 \). Let \(F = \bigcup_{i=1}^{n-1} (e_1,e_{i+1}) \), \(F = \bigcup_{i=1}^{n-2} (v_i,v_{i+1}) \)

... \(F_{n-3} = \bigcup_{i=1}^{n-3} (v_{n-3},v_{n-2}) \), \(F_{n-2} = \bigcup_{i=1}^{n-2} (v_{n-2},v_{n-1}) \), \(F_{n-1} = \bigcup_{i=1}^{n-1} (v_1,v_n) \)

and let \(F = \bigcup_{i=1}^{n-1} (v_i,v_{i+1}) \). Then \(F \subseteq E(B_1(K_n)) \), \(F \) is a dominating set of \(B_1(K_n) \). Let \(P_n \) be the path induced by the vertices \(v_1, v_2, \ldots, v_n \). \(F \) is a graph obtained by attaching \(n-2, n-3, n-4, \ldots, 2 \) and \(n-2 \) pendant edges at \(v_1, v_2, \ldots, v_{n-3}, v_{n-2} \) of \(P_n \), respectively. Therefore, \(F \) is a connected edge dominating set of \(B_1(K_n) \) and hence,

\(\gamma_c'(B_2(K_n)) \leq |F| = |F_{n-1}| - F = (n-2) + (n-3) + \ldots + 2 + (n-2) + (n-1) n / 2 - 1 + n = (n^2 - n - 2 + 2n - 4) / 2 = (n^2 + n - 6) / 2 = (n+3)(n-2) / 2 \). \(F \) is also a minimum connected edge dominating set of \(B_1(K_n) \) and hence \(\gamma_c'(B_1(K_n)) = (n+3)(n-2) / 2 \).

Remark: 2.3

(i) \(\gamma_c'(B_1(K_5)) = 5 \)

(ii) \(\gamma_c'(B_1(K_4)) = 6 \)

Theorem 2.4. For the star \(K_{1,n} \) on \(n+1 \) vertices \(n \geq 4 \), \(\gamma_c'(B_2(K_{1,n})) = n+1 \).

Proof: Let \(v_1, v_2, \ldots, v_n \) be the vertices of \(K_{1,n} \) with \(v \) as the central vertex. \(E(K_{1,n}) = \{e_{i+1} = (v,v_{i+1}) / 1 \leq i \leq n \} \).

\(B_1(K_{1,n}) \) has \(2n+1 \) vertices and \(3(n-1)/2 \) edges.

Let \(D' = \{ \bigcup_{i=1}^{n-1} (e_i,e_{i+1}) \} \cup \{ (v,v_i), (v_1,v_i) \} \). Then \(|D'| = n+1 \). The edge \((v,v_1) \) in \(D' \) dominates all the edges of \(G \) and the edges \(U^{n-1}_{i=1} (e_i,e_{i+1}) \), \((v_1,v_n) \) dominate remaining edges of \(K_{1,n} \) and \(D' \) contains \(n+1 \) edges of \(K_{1,n} \) and hence \(\gamma_c'(B_2(K_{1,n})) \leq |D'| = n+1 \). Let \(D'' \) be a connected edge dominating set of \(K_{1,n} \). To dominate \(K_{1,n} \), \(D'' \) contains one edge of \(K_{1,n} \) and to dominate \(n(n-1) \) edges of the form \((v_i,e_j) \) \((e_i \neq (v_i,v_{i+1}) \). \(D'' \) contains at least \((n-1) \) edges. Since \(D'' \) is connected, \(D'' \) contains one more edge and hence \(|D'| \geq n+1 \). Therefore, \(\gamma_c'(B_2(K_{1,n})) = n+1 \).

Theorem 2.5: For the Wheel \(W_n \) on \(n \) vertices \(n \geq 5 \), \(\gamma_c'(B_1(W_n)) = 3n-5 \).

Proof: Let \(v_1, v_2, \ldots, v_n \) be the vertices of \(W_n \) with \(v_1 \) as the central vertex and \(e_{i+1} = (v_{i+1}, v_i) / 1 \leq i \leq n \). Then \(e_{i+1} = (v_{i+1}, v_i) / 2, 3, \ldots, n \). \(B_1(W_n) \) has \(2n-1 \) vertices and \((n-1)(3n-4)/2 \) edges.

Let \(F_1 = \bigcup_{i=1}^{n-1} (v_i,v_{i+1}), F_2 = \bigcup_{i=1}^{n-2} (v_i,e_{i+1,i+2}) \)
\[
F_3 = \bigcup_{i=2}^{n-2} \{ (e_{i+1}, e_{i}) \} \cup \{ e_{n-1}, e_{2n} \}
\]

Let \(D' = F_3 \cup F_3 \cup F_3 \) and \(D' \) dominates all the edges of \(W_n \) and edges of the form \((v_i, e_{i+1})\) where \(e_{i+1} \) is not incident with \(v_i \). \(F_2 \cup F_3 \) dominates all the edges of \(L(W_n) \). Therefore, \(D' \) is a edge dominating set of \(B_1(W_n) \). \(|D'| \leq n-1+n-2+n-2 = 3n-5\). <D'> is a graph obtained from \(P_{n-2} \) by subdividing each pendant edge and then attaching a path of length 2 at a pendant vertex of \(P_{n-2} \). \(D' \) is a connected edge dominating set of \(B_1(W_n) \).

Let \(D'' \) be a minimum connected edge dominating set of \(B_1(W_n) \). To dominate edges of \(W_n \) and edges of the form \((v_i, e_{i+1})\) and to maintain connectedness of <D’>, \(D'' \) contains at least \((n-1)\) edges of \(W_{n-2} \) and \((n-2)\) edges of the form \((v_i, e_{i+1})\) and \((n-2)\) edges of \(L(W_n) \).

Therefore, \(|D'| \geq 3n-5\). Hence, \(\gamma_c(B_1(W_n)) = 3n-5 \).

Remark: Since every connected edge dominating set is also an edge dominating set of a graph \(G, \gamma'(B_1(G)) \leq \gamma_c(B_1(G)) \)

Remark: Any connected edge dominating set is also a total edge dominating set and hence \(\gamma'_t(B_1(G)) \leq \gamma_c(B_1(G)) \).

3. Total edge domination in \(B(G, L(G), \text{NINC}) \) of a Graph

In the following total edge domination number of \(B_1(P_n), B_1(C_n), B_1(K_{1,n})B_1(W_n) \) are found.

Theorem: For the path \(P_n \) on \(n \geq 4 \) vertices, \(\gamma'_t(B_1(P_n)) \leq n \).

Proof: Let \(v_1, v_2, \ldots, v_n \) be the vertices and \(e_{i+1} = (v_i, v_{i+1}) \) \((i = 1, 2, \ldots, n-1)\) be the edges of \(P_n \). Then \(v_1, v_2, \ldots, v_n, e_{12}, e_{23}, \ldots, e_{n-1n} \in V(B_1(P_n)). B_1(P_n) \) has \(2n-1 \) vertices and \(n^2 - n - 1 \) edges.

Case (i): \(n \) is even

Let \(D' = \bigcup_{i=1}^{n/2} \{ (v_{2i-1}, v_{2i}) \} \) and \(D'' = \bigcup_{i=1}^{n/2} \{ (v_{2i+1}, e_{2i-1,2i}) \} \) and \(D = D' \cup D'' \) \((v_i, e_{n-2n-1})\)}

Then \(D \subseteq E(B_1(P_n)) \) and \(|D| = \frac{n}{2} + \frac{n-2}{2} + 1 = n \). \(D \) is an edge dominating set of \(B_1(P_n) \) and \(\gamma'(B_1(P_n)) \leq n \).

Therefore, \(D \) is a total edge dominating set of \(B_1(P_n) \) and hence \(\gamma'_t(B_1(P_n)) \leq |D| = n \).

Case (ii): \(n \) is odd

Let \(D' = \bigcup_{i=1}^{n-1/2} \{ (v_{2i-1}, v_{2i}) \} \) and \(D'' = \bigcup_{i=1}^{n-3/2} \{ (v_{2i+1}, e_{2i-1,2i}) \} \)

and let \(F = F' \cup F'' \cup \{ (v_{n+1}, v_n) \} \) then \(F \subseteq E(B_1(P_n)) \) and \(|F| = \frac{n-1}{2} + \frac{n-3}{2} + 2 = n \). \(F \) is an edge dominating set of \(B_1(P_n) \) and \(\gamma'(B_1(P_n)) \leq |F| = n \).

International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com
(1) Let \(V(P_8) = \{v_1, v_2, ..., v_8\} \) and \(E(P_8) = \{(v_i, v_{i+1}) \mid i = 1, 2, ..., 7\} \).

Then \(D = \{(v_1, v_2) \cup (v_3, v_4) \cup (v_5, v_6) \cup (v_7, v_8) \cup (v_1, e_{67}) \cup (v_3, e_{12}) \cup (v_5, e_{34}) \cup (v_7, e_{56})\} \) is an edge dominating set of \(B_n \) and \(D \subseteq E(B_1(P_8)) \) and \(<D> \geq 4 \). \(D \) is a total edge dominating set of \(B_1(P_8) \). Therefore, \(\gamma'_t(B_1(P_8)) \leq 8 \).

(2) Let \(V(P_7) = \{v_1, v_2, ..., v_7\} \) and \(E(P_7) = \{(v_i, v_{i+1}) \mid i = 1, 2, ..., 6\} \).

Then \(D = \{(v_1, v_2) \cup (v_3, v_4) \cup (v_5, v_6) \cup (v_7, v_8) \cup (v_1, e_{67}) \cup (v_3, e_{12}) \cup (v_5, e_{34}) \cup (v_7, e_{56})\} \) is an edge domination set of \(B_1(P_7) \) and \(D \subseteq E(B_1(P_7)) \) and \(<D> \geq 2 \). \(D \) is a total edge dominating set of \(B_1(P_7) \). Therefore, \(\gamma'_t(B_1(P_7)) \leq 7 \).

Theorem 3.2 For the cycle \(C_n \) on \(n (n \geq 3) \) vertices, \(\gamma'_t(B_1(C_n)) \leq n \), if \(n \) is even
\[\leq n + 1, \text{if } n \text{ is odd} \]

Proof: Let \(v_1, v_2, ..., v_n \) be the vertices and \(e_{i} = (v_i, v_{i+1}) \) \((i = 1, 2, ..., n-1) \) and \(e_n = (v_n, v_1) \) be the edges of \(C_n \). Then \(v_1, v_2, ..., v_n, e_{12}, e_{23}, ..., e_{n-1,n} \in V(B_1(C_n)) \). \(B_1(C_n) \) has \(2n \) vertices and \(n^2 \) edges.

Case (i): \(n \) is even

Let \(D' = \bigcup_{i=1}^{n/2} \{(v_{2i-1}, v_{2i})\} \) and \(D'' = \bigcup_{i=1}^{n-2} \{(v_{2i-1} + 1, v_{2i} - 1)\} \) and \(D = D' \cup D'' \). Then \(D \subseteq E(B_1(C_n)) \) and \(|D| = \frac{n}{2} + \frac{n-2}{2} + 1 = n \). \(D \) is an edge dominating set of \(B_1(C_n) \) and with central vertices \(v_1, v_2, ..., v_{n/2} \) respectively.

Therefore, \(D \) is a total edge dominating set of \(B_1(C_n) \) and hence \(\gamma'_t(B_1(C_n)) \leq |D| = n \).

Case (ii): \(n \) is odd

Let \(F' = \bigcup_{i=1}^{n/2} \{(v_{2i-1}, v_{2i})\} \)

\[F'' = \bigcup_{i=1}^{(n-2)/2} \{(v_{2i-1} + 1, v_{2i} - 1, 2)\} \] and let \(F = F' \cup F'' \cup \{(v_i, e_{n-1,n})\} \) then \(F \subseteq E(B_1(C_n)) \) and \(|F| = \frac{n}{2} + \frac{n-1}{2} + 1 = n + 1 \). \(D \) is an edge dominating set of \(B_1(C_n) \) and \(<D> \geq \frac{n-3}{2} + P_3 \cup P_4 \) where the central vertices of \(P_3 \) and \(P_5 \) are \(v_1, v_2, ..., v_{n-4} \) and \(v_3, v_4 \). \(D \) is induced by the edges \((v_{n-2}, v_{n-1}) \), \((v_{n-1}, v_n) \) and \((v_n, e_{n-2,n-1}) \) and \((v_{n-2}, e_{n-4,n-3}) \). Therefore, \(D \) is a total edge dominating set of \(B_1(C_n) \) and hence \(\gamma'_t(B_1(C_n)) \leq |D| = n + 1 \).

Theorem 3.3 For the star \(K_{1,n} \) on \((n+1) \) vertices (\(n \geq 3 \)), \(\gamma'_t(B_1(K_{1,n})) \leq n + 1 \)

Proof: Let \(v_1, v_2, v_3, ..., v_{n+1} \) be the vertices of \(K_{1,n} \) with \(v_1 \) as the central vertex. Let \(e_{i+1} = (v_i, v_i), i = 2, 3, ..., n+1 \) be the edges of \(K_{1,n} \). Then \(v_1, v_2, ..., v_{n+1}, e_{12}, e_{13}, ..., e_{n+1} \in V(B_1(K_{1,n})) \). \(B_1(K_{1,n}) \) has \(2n + 1 \) vertices and \(2n + 1 \) and \((n(3n-1))/2 \) edges.

Case (i): \(n \) is odd
Let \(D' = \bigcup_{i=3}^{n+3/2} \{(v_i, e_{2i-2}), (e_{2i-2}, e_{2i-1})\} \) where \(e_{1,n+2} = e_{12} \) and let \(D = D' \cup \{(v_1, v_2), (v_2, e_{13})\} \). Then \(D \subseteq E(B_1(K_{n,n}) \) and \(|D| = 2 + \frac{n+2}{2} = n+1 \). \(D \) is an edge dominating set of \(B_1(K_{n,n}) \) and \(<D>D_{\frac{n+1}{2}-2} \) with central vertices \(v_2, e_{14}, e_{16}, ..., e_{1,n} \). Therefore, \(D \) is a total edge dominating set of \(B_1(K_{n,n}) \) and hence \(\gamma'(B_1(K_{n,n})) \leq |D| = n+1 \).

case(ii): \(n \) is even

Let \(F' = \bigcup_{i=1}^{n+2/2} \{(v_1, e_{1,2i-2}), (v_2, e_{1,2i-1})\} \) and \(F = F' \cup \{(v_1, v_2), (v_2, e_{13})\} \) where \(e_{1,n+2} = e_{12} \) and let \(D = D' \cup \{(v_1, v_2), (v_2, e_{13})\} \). Then \(D \subseteq E(B_1(K_{n,n}) \) and \(|D| = 2 + \frac{n+3}{2} = n+1 \). \(D \) is an edge dominating set of \(B_1(K_{n,n}) \) and \(<D>D_{\frac{n+2}{2}-2} \) with central vertices \(v_2, e_{14}, e_{16}, ..., e_{1,n} \). Therefore, \(D \) is a total edge dominating set of \(B_1(K_{n,n}) \) and hence \(\gamma'(B_1(K_{n,n})) \leq |D| = n+1 \).

Theorem 3.4 For the Wheel \(W_n \) \((n \geq 5)\) on \(n \) vertices, \(\gamma'(B_1(W_n)) \leq 2n - 2 \).

Proof: Let \(v_1, v_2, v_3, ..., v_n \) be the vertices of \(W_n \) with \(v_1 \) as the central vertex. Let \(e_{1,i} = (v_i, v_i) \) \((i = 2, 3, ..., n)\) and \(e_{i,i+1} = (v_i, v_{i+1}) \) \((i = 2, 3, ..., n-1)\) be the edges of \(W_n \). Then \(v_1, v_2, v_3, ..., v_n \) are \(e_{12}, e_{13}, e_{14}, ..., e_{n-1,n} \). Therefore, \(D \) is a total edge dominating set of \(B_1(W_n) \) and hence \(\gamma'(B_1(W_n)) \leq |D| = n+1 \).

Case(i): \(n \) is even

Let \(D' = \bigcup_{i=3}^{n+3/2} \{(v_i, e_{2i-2}), (e_{2i-2}, e_{2i-1})\} \) and \(D'' = \bigcup_{i=3}^{n+3/2} \{(v_i, e_{2i-2}), (e_{2i-2}, e_{2i-1})\} \) where \(e_{1,n+2} = e_{12} \) and let \(D = D' \cup D'' \cup \{(v_1, v_2), (v_2, e_{13})\} \). Then \(D \subseteq E(B_1(W_n)) \) and \(|D| = 2 + \frac{n+2}{2} = n+1 \). \(D \) is an edge dominating set of \(B_1(W_n) \) and hence \(\gamma'(B_1(W_n)) \leq |D| = n+1 \).

Case(ii): \(n \) is odd

Let \(F' = \bigcup_{i=3}^{n+3/2} \{(v_i, e_{2i-2}), (e_{2i-2}, e_{2i-1})\} \) and \(F'' = \bigcup_{i=3}^{n+3/2} \{(v_i, e_{2i-2}), (e_{2i-2}, e_{2i-1})\} \) where \(e_{1,n+2} = e_{12} \) and let \(F = F' \cup F'' \cup \{(v_1, v_2), (v_2, e_{13})\} \). Then \(F \) is a total edge dominating set of \(B_1(W_n) \) and hence \(\gamma'(B_1(W_n)) \leq |F| = 2n - 2 \).

Theorem 3.5 If \(\gamma'(B_1(G)) \leq 2 \beta_1(G) + 2 \alpha_0(L(G)) \).

Proof: Let \(K \subseteq E(G) \) be a perfect matching such that \(|K| = k = \beta_1(G) \). Then \(K \subseteq E(B_1(G)) \).
Let \(K = \{(v_1, u_1) \ (v_2, u_2), \ldots, (v_k, u_k)\} \). Let \(M \) be a point cover of \(L(G) \) and let \(|M| = \alpha_0(L(G)) = m = \{e_1, e_2, \ldots, e_m\} \). Case: (i) \(k \geq m \ (\beta_1(G) > \alpha_0) \).

Choose one of \(u_i \) and \(v_i \). Let it be \(v_i \) \((i = 1, 2, \ldots, k)\). Choose a distinct vertex \(e_i \) in \(M \) such that the corresponding edge in \(G \) is not incident with \(v_i \). Then the edge \((v_i, u_i) \in E(B_1(G)) \). Let \(L \) be the set of all these edges. \(|L| = k \). Then \(L \subseteq E(B_1(G)) \). Let \(D = K \cup L \subseteq E(B_1(G)) \). \(K \) dominates all the edges of \(G \) in \(B_1(G) \) and edges of the form \((w, e)\) where \(e \in E(G) \) is not incident with \(w \in V(G) \). \(L \) dominates all the edges of \(L(G) \). Therefore, \(D \) is an edge dominating set of \(B_1(G) \). Also \(<D> \) contains no isolated edges. Therefore, \(D \) is a total edge dominating set of \(B_1(G) \) and hence \(\gamma'_t(B_1(G)) \leq |D| = |K \cup L| = 2K = 2\beta_1(G) \).

Case(ii): \(k \leq m \), that is \(\beta_1(G) > \alpha_0(L(G)) \). For each vertex \(e_i \in M \), choose a vertex \(u_i \) (or) \(v_i \), which is not incident with \(e_i \). Then the edge \((v_i, e_i) \in E(B_1(G)) \). Let \(N \) be the set of all these edges. \(|N| = m \), \(N \subseteq E(B_1(G)) \). Then the set \(D' = K \cup N \) is a total edge dominating set of \(B_1(G) \) as in case(i). Therefore, \(\gamma'_t(B_1(G)) \leq |D'| = |K \cup N| = \beta_1(G) + m = \beta_1(G) + \alpha_0(L(G)) \leq \alpha_0(L(G)) \).

Therefore, \(\gamma'_t(B_1(G)) \leq 2\beta_1(G) \) if \(\beta_1(G) > \alpha_0(L(G)) \).

\[
\leq 2\alpha_0(L(G)) \text{ if } \beta_1(G) \leq \alpha_0(L(G)).
\]

4. CONCLUSION

In this paper, connected edge and total edge domination numbers of Boolean Function Graph \(B(G, L(G), N) \) of paths, cycles, complete graphs, stars, wheels are obtained.

REFERENCE:

[3]. T. N. Janakiraman, S.Muthammai, M.Bhanumathi, On the Boolean Function Graph of a Graph and on its Complement, Mathematica Bohemica, 130(2005), No.2, pp. 113-134.
[4]. T. N. Janakiraman, S. Muthammai, M. Bhanumathi, Domination Numbers on the Boolean Function Graph of a Graph, Mathematica Bohemica, 130(2005), No.2, 135-151.