<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2d1 20170631//EN" "JATS-journalpublishing1.dtd">
<ArticleSet>
  <Article>
    <Journal>
      <PublisherName>ijesm</PublisherName>
      <JournalTitle>International Journal of Engineering, Science and</JournalTitle>
      <PISSN>I</PISSN>
      <EISSN>S</EISSN>
      <Volume-Issue>Volume 6, Issue 8,</Volume-Issue>
      <PartNumber/>
      <IssueTopic>Multidisciplinary</IssueTopic>
      <IssueLanguage>English</IssueLanguage>
      <Season>December 2017 (Special Issue)</Season>
      <SpecialIssue>N</SpecialIssue>
      <SupplementaryIssue>N</SupplementaryIssue>
      <IssueOA>Y</IssueOA>
      <PubDate>
        <Year>-0001</Year>
        <Month>11</Month>
        <Day>30</Day>
      </PubDate>
      <ArticleType>Engineering, Science and Mathematics</ArticleType>
      <ArticleTitle>Hermite Wavelet Based Method for the Numerical Solution of Linear and Nonlinear Delay Differential Equations</ArticleTitle>
      <SubTitle/>
      <ArticleLanguage>English</ArticleLanguage>
      <ArticleOA>Y</ArticleOA>
      <FirstPage>71</FirstPage>
      <LastPage>79</LastPage>
      <AuthorList>
        <Author>
          <FirstName>S. C. Shiralashetti ?a B. S. Hoogar **b Kumbinarasaiah</FirstName>
          <LastName>S***c</LastName>
          <AuthorLanguage>English</AuthorLanguage>
          <Affiliation/>
          <CorrespondingAuthor>N</CorrespondingAuthor>
          <ORCID/>
        </Author>
      </AuthorList>
      <DOI/>
      <Abstract>The theory and application of Delay Differential Equations (DDE__ampersandsign#39;s) have recently drawn a great deal of attention from Scientists, mathematicians and other disciplines. In this paper, Hermite Wavelet based Numerical Method for the solution of Delay Differential Equations (DDE__ampersandsign#39;s) is presented. The method is based on Hermite Polynomials. The present method reduces the computational difficulties of the other traditional methods and all the calculations can be made simple manipulations. Some illustrative numerical experiments are included to demonstrate the validity and applicability of the present technique. Comparison of numerical results explicitly reflects the high level of accuracy and reliability.</Abstract>
      <AbstractLanguage>English</AbstractLanguage>
      <Keywords>Hermite wavelet (HW),Delay Differential Equations (DDE's),Limit Point</Keywords>
      <URLs>
        <Abstract>https://www.ijesm.co.in/ubijournal-v1copy/journals/abstract.php?article_id=4221&amp;title=Hermite Wavelet Based Method for the Numerical Solution of Linear and Nonlinear Delay Differential Equations</Abstract>
      </URLs>
      <References>
        <ReferencesarticleTitle>References</ReferencesarticleTitle>
        <ReferencesfirstPage>16</ReferencesfirstPage>
        <ReferenceslastPage>19</ReferenceslastPage>
        <References/>
      </References>
    </Journal>
  </Article>
</ArticleSet>