Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at:

Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

CHARACTERIZATION OF

INTUITIONISTIC MULTI-FUZZY NORMAL SUBGROUP

S.Balamurugan

Department of Mathematics,

Velammal College of Engineering & Technology, Madurai-625 009, Tamilnadu, India.

ABSTRACT For any intuitionistic multi-fuzzy set $A = \{ < x , \mu_A(x) , \nu_A(x) > : x \in X \}$ of an universe set X, we study the crisp multi-set $\{ x \in X : \mu_i(x) \geq \alpha_i , \nu_i(x) \leq \beta_i , \forall i \}$ of X. In this paper, an attempt has been made to study some algebraic nature of intuitionistic multi-fuzzy normal subgroup and their properties are discussed.

Keywords Intuitionistic fuzzy set (IFS), Intuitionistic multi-fuzzy set (IMFS), Intuitionistic multi-fuzzy subgroup (IMFSG), Intuitionistic multi-fuzzy normal subgroup (IMFNSG).

Mathematics Subject Classification 20N25, 03E72, 08A72, 03F55, 06F35, 03G25, 08A05

1. INTRODUCTION

After the introduction of the concept of fuzzy set by Zadeh [14] several researches were conducted on the generalization of the notion of fuzzy set. The idea of intuitionistic fuzzy set was given by Krassimir.T.Atanassov [1]. An intuitionistic fuzzy set is characterized by two functions expressing the degree of membership (belongingness) and the degree of non-membership (non-belongingness) of elements of the universe to the IFS. Among the various notions of higher-order fuzzy sets, Intuitionistic Fuzzy sets proposed by Atanassov provide a flexible framework to explain uncertainity and vagueness. An element of a multi-fuzzy set can occur more than once with possibly the same or different membership values. In 2011, P.K.Sharma [12] initiated the concept of Intuitionistic fuzzy groups. T.K.Shinoj and Sunil Jacob John [13] was introduced the concept of Intuitionistic multi-fuzzy set in the year of 2013.

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

R.Muthuraj and S.Balamurugan [8] introduced the new algebraic structure Intuitionistic multifuzzy subgroup in 2014. In this paper we study intuitionistic multi-fuzzy normal subgroup and its properties. This paper is an attempt to combine the two concepts: intuitionistic multi-fuzzy sets and multi-fuzzy subgroups together by introducing a new concept called intuitionistic multifuzzy normal subgroups.

2. PRELIMINARIES

In this section, we site the fundamental definitions that will be used in the sequel.

2.1 Definition [14]

Let X be a non-empty set. Then a **fuzzy set** $\mu: X \rightarrow [0,1]$.

2.2 Definition [7, 10, 11]

Let X be a non-empty set. A **multi-fuzzy set** A of X is defined as $A = \{ \langle x, \mu_A(x) \rangle : x \in X \}$ where $\mu_A = (\mu_1, \mu_2, ..., \mu_k)$, that is, $\mu_A(x) = (\mu_1(x), \mu_2(x), ..., \mu_k(x))$ and $\mu_i : X \to [0,1]$, $\forall i=1,2,...,k$. Here k is the finite dimension of A. Also note that, for all i, $\mu_i(x)$ is a decreasingly ordered sequence of elements. That is, $\mu_1(x) \ge \mu_2(x) \ge ... \ge \mu_k(x)$, $\forall x \in X$.

2.3 Definition [1]

Let X be a non-empty set. An **Intuitionistic Fuzzy Set (IFS)** A of X is an object of the form $A = \{ \langle x, \mu(x), \nu(x) \rangle : x \in X \}$, where $\mu : X \to [0, 1]$ and $\nu : X \to [0, 1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively with $0 \le \mu(x) + \nu(x) \le 1$, $\forall x \in X$.

2.4 Remark [1]

- (i) Every fuzzy set A on a non-empty set X is obviously an intuitionistic fuzzy set having the form $A = \{ \langle x, \mu(x), 1 \mu(x) \rangle : x \in X \}$.
- (ii) In the definition 2.3, When $\mu(x)+\nu(x)=1$, that is, when $\nu(x)=1-\mu(x)=\mu^c(x)$, A is called fuzzy set.

2.5 Definition [8, 13]

$$\begin{split} \text{Let}\, A \! = \! \{ < \! x, \mu_{A}(x), \! \nu_{A}(x) \! > : \! x \! \in \! G \}, & \text{ where } \quad \! \mu_{A}(x) \! = \! (\mu_{A_{1}}(x), \, \mu_{A_{2}}(x), \, \mu_{A_{3}}(x), \! \dots \, \mu_{A_{k}}(x)) & \text{ and } \\ \nu_{A}(x) = (\nu_{A_{1}}(x), \nu_{A_{2}}(x), \nu_{A_{3}}(x), \! \dots \, \nu_{A_{k}}(x)) & \text{ such } \quad \text{that } \quad \! 0 \quad \! \leq \mu_{A_{1}}(x) + \nu_{A_{1}}(x) \! \leq \quad \! 1, \quad \forall \quad x \! \in \! G \quad \! , \end{split}$$

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

 $\mu_{A_1}: G \rightarrow [0,1]$ and $\nu_{A_1}: G \rightarrow [0,1]$ for all i=1,2,...,k. Here, $\mu_{A_1}(x) \ge \mu_{A_2}(x) \ge \mu_{A_3}(x) \ge ... \ge \mu_{A_k}(x)$, for all $x \in G$. That is, μ_{A_1} 's are decreasingly ordered sequence. Then the set A is said to be an **intuitionistic multi-fuzzy set (IMFS)** with dimension k of G.

2.6 Remark

Note that since we arrange the membership sequence in decreasing order, the corresponding non-membership sequence may not be in decreasing or increasing order.

2.7 Definition [8, 13]

Let $A=\{\ < x\ , \mu_A(x),\ \nu_A(x)>: x\in X\ \}$ and $B=\{\ < x\ , \mu_B(x),\ \nu_B(x)>: x\in X\ \}$ be any two IMFS's having the same dimension k of X. Then

- (i) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$.
- (ii) A = B if and only if $\mu_A(x) = \mu_B(x)$ and $\nu_A(x) = \nu_B(x)$ for all $x \in X$.
- (iii) $A^{C} = \{ \langle x, v_{A}(x), \mu_{A}(x) \rangle : x \in X \}$
- $$\begin{split} \text{(iv)} \quad & A \cap B = \{ \ < x \ , \ (\mu_{A \cap B})(x), \ (\nu_{A \cap B})(x) > : \ x \in X \ \} \ \text{where} \\ \\ & (\mu_{A \cap B})(x) = \min \{ \ \mu_A(x), \ \mu_B(x) \ \} = \min \{ \ \mu_{A_i}(x), \ \mu_{B_i}(x) \ \}, \ \forall \ i = 1, 2, \ldots, k \ \text{ and} \\ \\ & (\nu_{A \cap B})(x) = \max \{ \ \nu_A(x), \ \nu_B(x) \ \} = \max \{ \nu_{A_i}(x), \nu_{B_i}(x) \ \}, \ \forall \ i = 1, 2, \ldots, k. \end{split}$$
- $(v) \qquad A \cup B = \{\ < x\ , (\mu_{A \cup B})(x), (\nu_{A \cup B})(x) > : \ x \in X\ \} \ where$ $(\mu_{A \cup B})(x) = max\{\ \mu_{A}(x), \mu_{B}(x)\ \} = \ max\{\ \mu_{A_{i}}(x), \mu_{B_{i}}(x)\ \}, \ \forall \ i=1,2,...,k \ \ and$ $(\nu_{A \cup B})(x) = min\{\ \nu_{A}(x), \nu_{B}(x)\ \} = \ min\{\nu_{A_{i}}(x), \nu_{B_{i}}(x)\ \}, \ \forall \ i=1,2,...,k.$

Here { $\mu_{A_i}(x)$, $\mu_{B_i}(x)$ }represents the corresponding i^{th} position membership values of A and B respectively. Also, { $\nu_{A_i}(x)$, $\nu_{B_i}(x)$ } represents the corresponding i^{th} position non-membership values of A and B respectively.

2.8 Definition [13]

Let A and B be any two IMFS's of groups G_1 and G_2 respectively. Then the **Cartesian product** of A and B is denoted by $A \times B$, of $G_1 \times G_2$ is defined as:

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$A \times B = \{ \langle (p,q), \mu_{A \times B}(p,q), \nu_{A \times B}(p,q) \rangle : (p,q) \in G_1 \times G_2 \}$$
 where

$$\mu_{_{A\times B}}(\textbf{p},\textbf{q})\text{= }\min\{\,\mu_{_{A}}(\textbf{p})\,\,,\,\,\mu_{_{B}}(\textbf{q})\}\,\,\text{and}\,\,\,\nu_{_{A\times B}}(\textbf{p},\,\textbf{q})\,\text{= }\max\{\,\nu_{_{A}}(\textbf{p})\,\,,\,\nu_{_{B}}(\textbf{q})\}.$$

2.9 Definition [7, 8]

A mapping f from a group G_1 into a group G_2 is said to be a **homomorphism** if for all a, $b \in G_1$, f(ab) = f(a)f(b).

2.10 Definition [7, 8]

A mapping f from a group G_1 into a group G_2 is said to be **anti-homomorphism** if for all $a, b \in G_1$, f(ab) = f(b)f(a).

2.11 Definition [8]

An intuitionistic multi-fuzzy set (In short IMFS) $A = \{ < x , \mu_A(x), \nu_A(x) > : x \in G \}$ of a group G is said to be an **intuitionistic multi-fuzzy subgroup** of G (In short IMFSG) if it satisfies :

- (i) $\mu_A(xy^{-1}) \ge \min\{\mu_A(x), \mu_A(y)\}\$ and
- (ii) $v_A(xy^{-1}) \le max\{v_A(x), v_A(y)\}\ , \forall x,y \in G.$

2.12 Remark [8]

- (i) If A is an IFS of a group G, then the complement A^c is also an IFS of G.
- (ii) A is an IMFSG of a group $G \Leftrightarrow$ for each i, IFS $\{< x, \mu_{A_i}(x), \nu_{A_i}(x) > : x \in G\}$ is an IFSG of group G.

2.13 Theorem [8]

If $\{A_i: i \in I\}$ is a family of intuitionistic multi-fuzzy subgroups of a group G where $A_i = \{\langle x, \mu_{A_i}(x), \nu_{A_i}(x) \rangle : x \in G\}$, then $\bigcap A_i$ is also intuitionistic multi-fuzzy subgroup of G.

2.14 Theorem [8]

Let A and B be any two IMFSG's of a group G. Then $A \cup B$ need not be IMFSG of G.

2.15 Theorem [8]

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Let $f: G_1 \to G_2$ be anonto, homomorphism of groups G_1 and G_2 . If $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in G_1 \}$ is an intuitionistic multi-fuzzy subgroup of G_1 , then $f(A) = \{ \langle y, \mu_{f(A)}(y), \nu_{f(A)}(y) \rangle / y \in G_2$, where $y = f(x) \}$ is also an intuitionistic multi-fuzzy subgroup of G_2 , if μ_A has sup property; ν_A has inf property and μ_A , ν_A are f-invariants.

2.16 Theorem [8]

Let G_1 and G_2 be any two groups. Let $f:G_1\to G_2$ be a homomorphism of groups. If $B=\{\ < y,\ \mu_B(y),\ \nu_B(y)>: y\in G_2\ \}$ is an IMFSG of G_2 , then $f^{-1}(B)=\{\ < x,\ \mu_{f^{-1}(B)}\big(x\big),\ \nu_{f^{-1}(B)}\big(x\big)>: x\in G_1\ \} \text{ is also an IMFSG of } G_1.$

2.17 Theorem [8]

Let G_1 and G_2 be any two groups. Let $f:G_1\to G_2$ be an onto, anti-homomorphism. If A is an IMFSG of G_1 , then f(A) is also an IMFSG of G_2 if μ_A has sup property; ν_A has inf property and μ_A , ν_A are f-invariants.

2.18 Theorem [8]

Let G_1 and G_2 be any two groups. Let $f: G_1 \to G_2$ be an anti-homomorphism. If B is an IMFSG of G_2 , then $f^{-1}(B)$ is also an IMFSG of G_1 .

2.19 Theorem [8]

Let A and B be any two IMFSG's of groups G_1 and G_2 respectively. Then their Cartesian product A×B is also IMFSG of $G_1 \times G_2$.

2.20 Theorem [8]

Let A be an intuitionistic multi-fuzzy set of a group G and let $\langle A \rangle = \bigcap_i \{B_i/A \subseteq B_i \text{ and } B_i \text{ is} \}$ an intuitionistic multi-fuzzy subgroup of G.

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

3. Properties of intuitionistic multi-fuzzy normal subgroup

In this section, we introduce the concept of intuitionistic multi-fuzzy normal subgroup (In short IMFNSG) of a group and discussed some of its related properties.

3.1 Definition

An IMFSG $A = \{ \langle x , \mu_A(x), \nu_A(x) \rangle : x \in G \}$ of a group G is said to be an **intuitionistic multi-fuzzy normal subgroup** (In short IMFNSG) of G if it satisfies :

(i)
$$\mu_A(xy) = \mu_A(yx)$$
 and

(ii)
$$v_A(xy) = v_A(yx)$$
, for all $x,y \in G$.

3.2 Theorem

An IMFSG A of agroup G is said to be an IMFNSG if it satisfies for all x, g \in G, $\mu_{_A}\big(g^{_{-1}}xg\big) = \mu_{_A}\big(x\big) \text{and } \nu_{_A}\big(g^{_{-1}}xg\big) = \nu_{_A}\big(x\big).$

Proof: Let $x, g \in G$.

Then
$$\mu_A(g^{-1}xg) = \mu_A(g^{-1}(xg))$$

$$= \mu_A((xg)g^{-1}), \text{ since A is IMFNSG of G.}$$

$$= \mu_A(x(gg^{-1})) = \mu_A(xe) = \mu_A(x).$$
Now, $\nu_A(g^{-1}xg) = \nu_A(g^{-1}(xg))$

$$= \mathbf{V}_{A}((xg)g^{-1}), \text{ since A is IMFNSG of G.}$$

$$= \mathbf{V}_{A}(x(gg^{-1})) = \mathbf{V}_{A}(xe) = \mathbf{V}_{A}(x). \text{ Hence the Theorem.}$$

3.3 Theorem

If $\{A_i: i \in I\}$ is a family of IMFNSG's of a group G, then $\bigcap_i A_i$ is also IMFNSG of G.

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Proof: Let $A = \bigcap_{i} A_{i}$.

By Theorem 2.13, $\bigcap_i A_i$ is an IMFSG of G.

For any
$$x, g \in G$$
, $\mu_A(gxg^{-1}) = \mu_{\cap A_i}(gxg^{-1})$

$$= \min_i \ \mu_{A_i}(gxg^{-1})$$

$$= \min_i \ \mu_{A_i}(x)$$

$$= \mu_{\cap A_i}(x)$$

$$= \mu_A(x)$$

$$\text{That is,}\quad \mu_{_{A}}(gxg^{-1}) \quad = \mu_{_{A}}(x), \, \forall x, \, g \!\in\! G.$$

Also,
$$\mathbf{V}_{A}(gxg^{-1}) = \mathbf{V}_{A_{i}}(gxg^{-1})$$

$$= \max_{i} \mathbf{V}_{A_{i}}(gxg^{-1})$$

$$= \max_{i} \mathbf{V}_{A_{i}}(x)$$

$$= \mathbf{V}_{A_{i}}(x)$$

$$= \mathbf{V}_{A_{i}}(x)$$

That is,
$$V_A(gxg^{-1}) = V_A(x), \forall x, g \in G.$$

Hence, $A = \bigcap_{i} A_{i}$ is an IMFNSG of G.

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

3.4 Theorem

Union of two IMFNSG's of a group G need not be an IMFNSG of G.

Proof:Since, by Theorem 2.14, union of two IMFSG's of a group G need not be an IMFSG of G and hence the proof is clear.

3.5 Theorem

Let A be an IMFNSG of a group G. Then for all $x, y \in G$,

(i)
$$\mu_{\Lambda}(x) < \mu_{\Lambda}(y) \Rightarrow \mu_{\Lambda}(x) = \mu_{\Lambda}(xy) = \mu_{\Lambda}(yx)$$
 and

(ii)
$$V_A(x) > V_A(y) \Rightarrow V_A(x) = V_A(xy) = V_A(yx)$$
.

Proof: (i)Let A be an IMFNSG of a group G.

$$\Leftrightarrow \mu_{_A}(xy) = \mu_{_A}(yx) \text{ and } \psi_{_A}(xy) = \psi_{_A}(yx), \forall x, y \in G....(1)$$

Suppose that $\mu_{\Lambda}(x) < \mu_{\Lambda}(y)$ for some $x, y \in G$.

Then
$$\mu_{_{A}}(xy)\geq min\{\,\mu_{_{A}}(x),\,\mu_{_{A}}(y)\,\}$$

$$=\mu_{\Lambda}(x)$$
, by hypothesis.

That is,
$$\mu_{_{A}}(xy) \ge \mu_{_{A}}(x)$$
(2)

Now,
$$\mu_{\Delta}(x) = \mu_{\Delta}(xyy^{-1})$$

$$\geq \min\{\mu_{\Delta}(xy), \mu_{\Delta}(y^{-1})\}$$

$$= \min\{ \, \mu_{\Delta}(xy), \, \mu_{\Delta}(y) \, \}$$

$$=\mu_{A}(xy)$$

Therefore,
$$\mu_{_{A}}(x) \ge \mu_{_{A}}(xy)$$
(3)

From (2) and (3), we get
$$\mu_{\Lambda}(x) = \mu_{\Lambda}(xy)$$
 and by using (1),

$$\mu_{_{\Delta}}\left(x\right)=\mu_{_{\Delta}}\left(xy\right)=\mu_{_{\Delta}}\left(yx\right),\;\forall\;x,\,y\!\in\!G.\;\;\text{Hence (i)}.$$

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

(ii)Let A be an IMFNSG of a group G.

$$\Leftrightarrow \mu_{_{A}}(xy) = \mu_{_{A}}(yx) \text{ and } \psi_{_{A}}(xy) = \psi_{_{A}}(yx), \forall x, y \in G....(1)$$

Suppose that $V_{A}(x) > V_{A}(y)$ for some $x, y \in G$.

Then
$$V_A(xy) \le \max\{V_A(x), V_A(y)\}\$$

$$= V_A(x), \text{ by hypothesis.}$$

That is,
$$V_A(xy) \le V_A(x)$$
(4)

Now,
$$V_A(x) = V_A(xyy^{-1})$$

$$\leq \max\{ V_A(xy), V_A(y^{-1}) \}$$

$$= \max\{ V_A(xy), V_A(y) \}$$

$$= V_A(xy)$$

Therefore,
$$V_A(x) \le V_A(xy)$$
(5)

From (4) and (5), we get $V_A(x) = V_A(xy)$ and by using (1),

$$V_A(x) = V_A(xy) = V_A(yx), \forall x, y \in G.$$
 Hence(ii).

3.6 Remark

The above Theorem 3.5 fails, if we replace in the hypothesis:

$$(i) \qquad \mu_{_{\Delta}}\left(x\right) < \mu_{_{\Delta}}\left(y\right) \ by \ \mu_{_{\Delta}}\left(x\right) \leq \mu_{_{\Delta}}\left(y\right), \ \forall \ x, y \in G.$$

(ii)
$$V_{\Lambda}(x) > V_{\Lambda}(y)$$
 by $V_{\Lambda}(x) \ge V_{\Lambda}(y)$, $\forall x, y \in G$.

3.7 Definition

 $Let \ A \ be \ an \ IMFS \ of \ a \ group \ G \ and \ let \ \langle A \rangle = \bigcap \{B_i/A \underline{\subset} B_i \ and \ B_i \ is \ an \ IMFNSG \ of \ G\}.$

Then $\langle A \rangle$ is called the IMFNSG of G generated by A. Here, note that $A \subseteq B \Leftrightarrow \mu_{_A}(x) \leq \mu_{_B}(x)$ and $\nu_{_A}(x) \geq \nu_{_B}(x)$, $\forall x \in G$.

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

3.8 Theorem

Let A be an IMFS of a group G and let $\langle A \rangle = \bigcap\limits_{i} \{B_i / A \subseteq B_i \text{ and } B_i \text{ is an IMFNSG of G} \}.$

Then $\langle A \rangle$ is an IMFNSG of G.

Proof: By Theorem 2.20, $\langle A \rangle$ is an IMFSG of G.

Let $A\subseteq B_i$ and B_i be an IMFNSG of $G,~\forall~i.~$ Also given $\langle A\rangle=\buildrel B_i$.

Then $\forall x, y \in G$,

$$\begin{split} &\Rightarrow \mu_{\scriptscriptstyle \langle A \rangle}(xy) = \mu_{\scriptscriptstyle \bigcap B_i}(xy) \qquad \text{and} \qquad \nu_{\scriptscriptstyle \langle A \rangle}(xy) = \nu_{\scriptscriptstyle \bigcap B_i}(xy) \\ &\Rightarrow \mu_{\scriptscriptstyle \langle A \rangle}(xy) = \min_i \; \mu_{\scriptscriptstyle B_i}(xy) \quad \text{and} \qquad \nu_{\scriptscriptstyle \langle A \rangle}(xy) = \max_i \; \nu_{\scriptscriptstyle B_i}(xy) \\ &\Rightarrow \mu_{\scriptscriptstyle \langle A \rangle}(xy) = \min_i \; \mu_{\scriptscriptstyle B_i}(yx) \quad \text{and} \qquad \nu_{\scriptscriptstyle \langle A \rangle}(xy) = \max_i \; \nu_{\scriptscriptstyle B_i}(yx) \\ &\Rightarrow \mu_{\scriptscriptstyle \langle A \rangle}(xy) = \mu_{\scriptscriptstyle \bigcap B_i}(yx) \quad \text{and} \quad \nu_{\scriptscriptstyle \langle A \rangle}(xy) = \nu_{\scriptscriptstyle \bigcap B_i}(yx) \\ &\Rightarrow \mu_{\scriptscriptstyle \langle A \rangle}(xy) = \mu_{\scriptscriptstyle \langle A \rangle}(yx) \quad \text{and} \quad \nu_{\scriptscriptstyle \langle A \rangle}(xy) = \nu_{\scriptscriptstyle \langle A \rangle}(yx) \end{split}$$

Therefore, $\langle A \rangle$ is an IMFNSG of G.

3.9 Remarks

- 1. $\langle A \rangle$ is the IMFNSG of group G generated by A.
- 2. $\langle A \rangle$ is the smallest IMFNSG of group G which contains A.

4. Cartesian Product of intuitionistic multi-fuzzy normal subgroups

In this section, we introduce the concept of Cartesian product of intuitionistic multi-fuzzy normal subgroups and discuss some of its related properties.

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

4.1 Theorem

Let A and B be any two IMFNSG's of groups G_1 and G_2 respectively. Then their Cartesian product A×B is also an IMFNSG of $G_1 \times G_2$.

Proof: By Theorem 2.19, the Cartesian product $A \times B$ is an IMFSG of $G_1 \times G_2$.

Claim: $A \times B$ is an IMFNSG of $G_1 \times G_2$.

Let
$$(p, q), (r, s) \in G_1 \times G_2$$
. Then

$$\begin{split} \mu_{_{A\times B}}((p,q)\!(r,s)) &= \; \mu_{_{A\times B}}(pr,qs) \\ &= \; \min\{\, \mu_{_{A}}(pr), \mu_{_{B}}(qs)\} \\ &= \; \min\{\, \mu_{_{A}}(rp), \mu_{_{B}}(sq) \,\}, \, \text{since A \& B are IMFNSG's of G_1 and G_2.} \\ &= \; \mu_{_{A\times B}}(rp\,,sq) \\ &= \; \mu_{_{A\times B}}((r,s)\!(p,q)) \end{split}$$

That is,
$$\mu_{A \times B}((p,q)(r,s)) = \mu_{A \times B}((r,s)(p,q)).$$

$$\begin{split} \boldsymbol{\nu}_{A\times B}\big(\left(p,q\right)\!\!\left(r,s\right) \big) &= \; \boldsymbol{\nu}_{A\times B} \left(pr,qs\right) \\ &= \; \max\{\; \boldsymbol{\nu}_{A} \big(pr\big), \boldsymbol{\nu}_{B} \big(qs\big) \} \\ &= \; \max\{\; \boldsymbol{\nu}_{A} \big(rp\big), \boldsymbol{\nu}_{B} \big(sq\big) \; \}, \, \text{since A \& B are IMFNSG's of G_{1} and G_{2}.} \\ &= \; \boldsymbol{\nu}_{A\times B} \left(rp\,,sq\right) \\ &= \; \boldsymbol{\nu}_{A\times B} \big(\big(r,s\big) \big(p,q\big) \big) \end{split}$$

That is,
$$\mathbf{V}_{A\times B}((p,q)(r,s)) = \mathbf{V}_{A\times B}((r,s)(p,q)).$$

$$\text{Hence,} \mu_{_{A\times B}}(\,(p,q)\!(r,s)\,) = \mu_{_{A\times B}}(\,(r,s)\!(p,q)\,) \text{ and } \nu_{_{A\times B}}(\,(p,q)\!(r,s)\,) = \nu_{_{A\times B}}(\,(r,s)\!(p,q)\,)$$

Hence, $A \times B$ is an IMFNSG of $G_1 \times G_2$.

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

4.2 Remark

Let A and B be IMFS's of G_1 and G_2 respectively. If A×B is an IMFNSG of $G_1 \times G_2$, then it is not necessarily that both A and B are IMFNSG's of G_1 and G_2 respectively.

5. Properties of an intuitionistic multi-fuzzy normal subgroup of a group under homomorphism and anti-homomorphism

In this section, we discuss the properties of an intuitionistic multi-fuzzy normal subgroup of a group under homomorphism and anti-homomorphism.

5.1 Theorem

Let $f: G_1 \to G_2$ be an onto, homomorphism of groups. If $A = \{ < x \ , \ \mu_A(x), \ \nu_A(x) > : x \in G_1 \}$ is an IMFNSG of G_1 , then $f(A) = \{ < y, \mu_{f(A)}(y), \nu_{f(A)}(y) > / y \in G_2, \text{ wherey} = f(x) \}$ is also an IMFNSG of G_2 if μ_A has sup property; ν_A has inf property and μ_A, ν_A are finvariants.

Proof: By Theorem 2.15, f(A) is an IMFSG of G_2 .

Let A be an IMFNSG of group G_1 .

Let
$$y_1, y_2 \in G_2$$
.

Since f is onto, there exist elements $x_1, x_2 \in G_1$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$.

Since A is an IMFNSG of
$$G_1$$
, $\mu_{\Lambda}(x_1x_2) = \mu_{\Lambda}(x_2x_1)$ and $\nu_{\Lambda}(x_1x_2) = \nu_{\Lambda}(x_2x_1)$.

Also, $y_2y_1 = f(x_2)f(x_1) = f(x_2x_1)$, since f is a homomorphism.

Now,
$$\mu_{f(A)}(y_1y_2) = \mu_{f(A)}(f(x_1)f(x_2))$$

$$= \mu_{f(A)}(f(x_1x_2)), \text{ since f is a homomorphism.}$$

$$= \mu_{A}(x_1x_2),$$

$$\geq \min\{\mu_{A}(x_1), \mu_{A}(x_2)\}$$

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$\begin{split} &= \min \{ \, \mu_{f(A)} f(x_1) \, , \, \, \mu_{f(A)} f(x_2) \, \} \\ &= \mu_{f(A)} f(x_2 x_1) \\ &= \mu_{f(A)} (y_2 y_1) \, , \, \, \text{since f is a homomorphism.} \end{split}$$
 That is, $\, \mu_{f(A)} (\, y_1 y_2) \, = \mu_{f(A)} (\, y_2 y_1) , \forall \, y_1, y_2 \in G_2. \end{split}$ Also, $\, \nu_{f(A)} (y_1 y_2) \, = \nu_{f(A)} (\, f(x_1) f(x_2) \,) \\ &= \nu_{f(A)} (\, f(x_1 x_2) \,) , \, \, \text{since f is a homomorphism.} \\ &= \nu_{A} (\, x_1 x_2 \,) \\ &\leq \max \{ \, \nu_{A} (x_1) \, , \, \nu_{A} (x_2) \, \} \\ &= \max \{ \, \nu_{f(A)} f(x_1) \, , \, \nu_{f(A)} f(x_2) \, \} \\ &= \nu_{f(A)} f(x_2 x_1) \\ &= \nu_{f(A)} (y_2 y_1) \, , \, \, \text{since f is a homomorphism.} \end{split}$

That is, $\mathbf{V}_{f(A)}(y_1y_2) = \mathbf{V}_{f(A)}(y_2y_1), \forall y_1, y_2 \in G_2.$

Hence, f(A) is an IMFNSG of G_2 .

5.2 Theorem

Let G_1 and G_2 be any two groups. Let $f:G_1\to G_2$ be a homomorphism of groups. If $B=\{\ < y,\ \mu_B(y),\ \nu_B(y)>:\ y\in G_2\ \}$ is an IMFNSG of G_2 , then $f^{-1}(B)=\{\ < x,\ \mu_{f^{-1}(B)}\big(x\big),\ \nu_{f^{-1}(B)}\big(x\big)>:\ x\in G_1\ \}$ is also an IMFNSG of G_1 .

Proof: By Theorem 2.16, $f^{-1}(B)$ is an IMFSG of G_1 .

Let B be an IMFNSG of G_2 .

For any $x, y \in G_1$,

$$\mu_{f^{\text{-l}}(B)}(xy) = \mu_{_B}(f(xy))$$

$$= \mu_{_B}(f(x)f(y)), \text{ since } f \text{ is a homomorphism.}$$

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

 $= \ \mu_{_B}(f(y)f(x) \), \ \text{since B is an IMFNSG of } G_2.$

= $\mu_{\rm \tiny R}$ (f(yx)), since f is a homomorphism.

Therefore, $\mu_{f^{\text{-}1}(B)}(xy) = \mu_{f^{\text{-}1}(B)}(yx), \ \forall \ x, y \in G_1.$

For any $x, y \in G_1$,

$$\mathbf{v}_{f^{-1}(B)}(xy) = \mathbf{v}_{B}(f(xy))$$

$$= \mathbf{v}_{B}(f(x)f(y)), \text{ since } f \text{ is a homomorphism.}$$

$$= \mathbf{v}_{B}(f(y)f(x)), \text{ since } B \text{ is an IMFNSG of } G_{2}.$$

$$= \mathbf{v}_{B}(f(yx)), \text{ since } f \text{ is a homomorphism.}$$

Therefore, $\boldsymbol{\gamma}_{f^{\text{-}1}(B)}(xy) = \ \boldsymbol{\gamma}_{f^{\text{-}1}(B)}(yx), \ \forall \ x,y \in G_1.$

Hence, f⁻¹(B) is an IMFNSG of G₁.

5.3 Theorem

Let G_1 and G_2 be any two groups. Let $f:G_1 \to G_2$ be an onto, anti-homomorphism. If $A = \{ < x \; , \; \mu_A(x), \; \nu_A(x) > : \; x \in G \; \}$ is an IMFNSG of G_1 , then $f(A) = \{ < x \; , \; \mu_{f(A)}(x), \; \nu_{f(A)}(x) > : \; x \in G \; \}$ is also an IMFNSG of G_2 if μ_A has sup property; ν_A has inf property and μ_A , ν_A are finvariants.

Proof: By Theorem 2.17, f(A) is an IMFSG of G_2 .

Let A be an IMFNSG of G₁.

For every $x, y \in G_1$, there exist $f(x), f(y) \in G_2$.

Since A is an IMFNSG of G_1 , $\mu_{_A}(xy) = \mu_{_A}(yx)$ and $\nu_{_A}(xy) = \nu_{_A}(yx)$.

Now,
$$\mu_{f(A)}(f(x)f(y)) = \mu_{f(A)}(f(yx)), \text{ since } f \text{ is an anti-homomorphism.}$$

$$= \mu_{A}(yx)$$

$$= \mu_{A}(xy)$$

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

=
$$\mu_{f(A)}(f(xy))$$

= $\mu_{f(A)}(f(y)f(x))$, since f is an anti-homomorphism.

Therefore,
$$\mu_{f(A)}(f(x)f(y)) = \mu_{f(A)}(f(y)f(x)).$$

And
$$\mathbf{V}_{f(A)}(f(x)f(y)) = \mathbf{V}_{f(A)}(f(yx))$$
, since f is an anti-homomorphism.

$$= \mathbf{V}_{A}(yx)$$

$$= \mathbf{V}_{A}(xy)$$

$$= \mathbf{V}_{f(A)}(f(xy))$$

$$= \mathbf{V}_{f(A)}(f(y)f(x))$$
, since f is an anti-homomorphism.

Therefore,
$$V_{f(A)}(f(x)f(y)) = V_{f(A)}(f(y)f(x)).$$

Hence, f(A) is an IMFNSG of G_2 .

5.4 Theorem

Let G_1 and G_2 be any two groups. Let $f:G_1 \to G_2$ be an anti-homomorphism. If $B = \{ \langle y, \mu_B(y), \nu_B(y) \rangle : y \in G_2 \}$ is an IMFNSG of G_2 , then $f^{-1}(B) = \{ \langle x, \mu_{f^{-1}(B)}(x), \nu_{f^{-1}(B)}(x) \rangle : x \in G_1 \}$ is also an IMFNSG of G_1 .

Proof: By Theorem 2.18, $f^{-1}(B)$ is an IMFSG of G_1 .

Let B be an IMFNSG of G_2 .

For any $x, y \in G_1$,

$$\begin{split} \mu_{f^{\text{--1}}(B)}(xy) &= \mu_{_B}(f(xy)) \\ &= \mu_{_B}(f(y)f(x)), \text{ since } f \text{ is an anti-homomorphism.} \\ &= \mu_{_B}(f(x)f(y)), \text{ since } B \text{ is an IMFNSG of } G_2. \\ &= \mu_{_B}(f(yx)), \text{ since } f \text{ is an anti-homomorphism.} \end{split}$$

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$= \mu_{f^{-1}(B)}(yx)$$

Therefore, $\mu_{\mathbf{f}^{\text{-}1}(\mathbf{R})}(xy) = \mu_{\mathbf{f}^{\text{-}1}(\mathbf{R})}(yx), \, \forall \ x, \, y {\in} G_1 \ \text{and}$

For any $x, y \in G_1$,

$$\mathbf{V}_{f^{-1}(B)}(xy) = \mathbf{V}_{B}(f(xy))$$

$$= \mathbf{V}_{B}(f(y)f(x)), \text{ since } f \text{ is an anti-homomorphism.}$$

$$= \mathbf{V}_{B}(f(x)f(y)), \text{ since } B \text{ is an IMFNSG of } G_{2}.$$

$$= \mathbf{V}_{B}(f(yx)), \text{ since } f \text{ is an anti-homomorphism.}$$

$$= \mathbf{V}_{f^{-1}(B)}(yx)$$

Therefore, $\nu_{f^{\text{-1}(B)}}(xy) = \nu_{f^{\text{-1}(B)}}(yx), \forall x, y \in G_1.$

Hence, f⁻¹(B) is an IMFNSG of G₁.

5.5 Theorem

Let G_i (for i=1, 2, 3, 4) be groups. Let $f:G_1\times G_2\to G_3\times G_4$ be an onto homomorphism (or anti-homomorphism) of groups. Let A and B be any two IMFNSG's of G_1 and G_2 respectively. Let $f_1:G_1\to G_3$ and $f_2:G_2\to G_4$ be onto homomorphism (or anti-homomorphism) of groups. If $A\times B$ is an IMFNSG of $G_1\times G_2$, then $f(A\times B)$ is also an IMFNSG of $G_3\times G_4$ if $A\times B$ have sup property and also $A\times B$ is f-invariant.

Proof: It is clear.

5.6 Theorem

Let G_i (for i=1, 2, 3, 4) be groups. Let $f:G_1\times G_2\to G_3\times G_4$ be a homomorphism (or anti-homomorphism) of groups. Let C and D be any two IMFNSG's of G_3 and G_4 respectively. Let $f_1:G_1\to G_3$ and $f_2:G_2\to G_4$ be a homomorphism (or anti-homomorphism) of groups. If C×D is an IMFNSG of $G_3\times G_4$, then $f^{-1}(C\times D)$ is also an IMFNSG of $G_1\times G_2$.

Proof: It is clear.

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

5.7 Theorem

Let G_i (for i=1, 2, 3, 4) be groups. Let A and B be any two IMFNSG's of G_1 and G_2 respectively. Let $f_1:G_1\to G_3$ and $f_2:G_2\to G_4$ be onto homomorphism (or anti-homomorphism) of groups. Let $f:G_1\times G_2\to G_3\times G_4$ be an onto homomorphism (or anti-homomorphism) of groups such that $f((u, v)) = (f_1(u), f_2(v))$. If $A\times B$ is an IMFNSG of $G_1\times G_2$, then $f(A\times B) = f_1(A)\times f_2(B)$ if $A\times B$ have sup property and also $A\times B$ is f-invariant.

Proof: Let $A \times B$ be an IMFNSG of $G_1 \times G_2$.

Let $(u, v) \in G_1 \times G_2$. Then $u \in G_1$ and $v \in G_2$. It implies that $f_1(u) \in G_3$ and $f_2(v) \in G_4$.

Therefore, $(u, v) \in G_1 \times G_2 \Rightarrow f((u, v)) = (f_1(u), f_2(v)) \in G_3 \times G_4$. Then

$$\begin{split} \mu_{f(A\times B)}(f_1(u),\,f_2(v)) &= \mu_{f(A\times B)}(f(u,\,v)) \\ &= \mu_{A\times B}(u,\,v) \\ &= \min\{\,\mu_{_A}(u),\,\mu_{_B}(v)\} \\ &= \min\{\,\mu_{_{f_1(A)}}(f_1(u)),\,\mu_{_{f_2(B)}}(f_2(v))\} \\ &= \mu_{_{f_*(A)\bowtie f_*(B)}}(f_1(u),\,f_2(v)) \end{split}$$

 $Therefore, \; \mu_{_{f(A\times B)}}(f_1(u),\,f_2(v)) = \mu_{_{f_1(A) \not f_2(B)}}(f_1(u),\,f_2(v)), \, \text{for all (} f_1(u),f_2(v) \;) \in G_3 \times G_4.$

$$\begin{split} \boldsymbol{\nu}_{f(A \times B)}(f_1(u), \, f_2(v)) &= \boldsymbol{\nu}_{f(A \times B)}(f(u, \, v)) \\ &= \boldsymbol{\nu}_{A \times B} \, (u, \, v) \\ &= \, \max \{ \, \boldsymbol{\nu}_{A} \, (u), \, \boldsymbol{\nu}_{B} \, (v) \} \\ &= \, \max \{ \, \boldsymbol{\nu}_{f_1(A)} \, (f_1(u)), \, \boldsymbol{\nu}_{f_2(B)} \, (f_2(v)) \} \\ &= \, \boldsymbol{\nu}_{f_1(A) \times f_2(B)} \, (f_1(u), \, f_2(v)) \end{split}$$

Therefore, $V_{f_1(A \times B)}(f_1(u), f_2(v)) = V_{f_1(A) \times f_2(B)}(f_1(u), f_2(v))$, for all $(f_1(u), f_2(v)) \in G_3 \times G_4$.

Hence, $f(A \times B) = f_1(A) \times f_2(B)$.

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

5.8 Theorem

Let G_i (for i=1, 2, 3, 4) be groups. Let C and D be any two IMFNSG's of G_3 and G_4 respectively. Let $f_1: G_1 \to G_3$ and $f_2: G_2 \to G_4$ be homomorphism (or anti-homomorphism) of groups. Let $f: G_1 \times G_2 \to G_3 \times G_4$ be a homomorphism (or anti-homomorphism) such that $f(u, v) = (f_1(u), f_2(v))$. If $C \times D$ is an IMFNSG of $G_3 \times G_4$, then $f^{-1}(C \times D) = f_1^{-1}(C) \times f_2^{-1}(D)$.

Proof: Let $C \times D$ be an IMFNSG of $G_3 \times G_4$.

Let $(u,v) \in G_1 \times G_2$. Then $u \in G_1$ and $v \in G_2$. It implies that $f_1(u) \in G_3$ and $f_2(v) \in G_4$. Therefore, $(u,v) \in G_1 \times G_2$.

 \Rightarrow f((u, v)) = (f₁(u), f₂(v)) \in G₃×G₄, since f is homomorphism.

Then
$$\mu_{f^{-1}(C \times D)}(u,v) = \mu_{C \times D} f((u,v))$$

$$= \mu_{C \times D} (f_1(u), f_2(v))$$

$$= \min \{ \mu_C (f_1(u)), \mu_D (f_2(v)) \}$$

$$= \min \{ \mu_{f_1^{-1}(C)}(u), \mu_{f_2^{-1}(D)}(v) \}$$

$$= \mu_{f_2^{-1}(C) \times f_2^{-1}(D)}(u,v)$$

Therefore, $\mu_{f^{\text{--1}}(C \times D)}(u,v) = \mu_{f^{\text{--1}}(C) \times f^{\text{--1}}(D)}(u,v)$, for all $(u,v) \in G_1 \times G_2$.

And
$$\mathbf{V}_{f^{\text{--1}}(C \times D)}(u,v) = \mathbf{V}_{C \times D} f((u,v))$$

$$= \mathbf{V}_{C \times D} (f_1(u), f_2(v))$$

$$= \max \{ \mathbf{V}_C (f_1(u)), \mathbf{V}_D (f_2(v)) \}$$

$$= \max \{ \mathbf{V}_{f_1^{\text{--1}}(C)}(u), \mathbf{V}_{f_2^{\text{--1}}(D)}(v) \}$$

$$= \mathbf{V}_{f_1^{\text{--1}}(C) \times f_2^{\text{--1}}(D)}(u,v)$$

Therefore, $V_{f^{-1}(C \times D)}(u,v) = V_{f^{-1}(C) \times f^{-1}(D)}(u,v)$, for all $(u,v) \in G_1 \times G_2$.

Hence,
$$f^{-1}(C \times D) = f_1^{-1}(C) \times f_2^{-1}(D)$$
.

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

6. CONCLUSION

The intuitionistic multi-fuzzy sets are very important role for the development of the theory of intuitionistic multi-fuzzy subgroups. In this paper an attempt has been made to study some new algebraic structures of intuitionistic multi-fuzzy normal subgroups and their properties were discussed.

REFERENCES

- [1] Atanassov K.T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), No.1,87-96.
- [2] Basnet D.K. and Sarma N.K., A note on Intuitionistic Fuzzy Equivalence Relation, International Mathematical Forum, 5, 2010, No.67, 3301-3307.
- [3] Biswas R., Vague Groups, International Journal of Computational Cognition, Vol.4, No.2, June 2006.
- [4] Das P.S., Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applications, 84 (1981), 264-269.
- [5] KulHur and Su Youn Jang, The lattice of Intuitionistic fuzzy congruences, International Mathematical Forum, 1, 2006, No.5, 211-236.
- [6] Mukharjee N.P. and Bhattacharya P., Fuzzy normal subgroups and fuzzy cosets, Information Sciences, 34 (1984), 225-239.
- [7] Muthuraj R. and Balamurugan S., Multi-fuzzy group and its Level subgroups, Gen. Math. Notes, Vol. 17, No.1, July, 2013, pp. 74-81.
- [8] Muthuraj.R and Balamurugan.S., "A Study on Intuitionistic Multi-Fuzzy Subgroups", Intl. Jour. of Applications of Fuzzy Sets and Artificial Intelligence (IJAFSAI), Vol. 4 (July 2014), pp.153-172.
- [9] Rosenfeld A., Fuzzy groups, Journal of Mathematical Analysis and Applications, 35 (1971), 512-517.
- [10] Sabu S. and Ramakrishnan T.V., Multi-fuzzy sets, International Mathematical Forum, 50 (2010), 2471-2476.
- [11] Sabu S. and Ramakrishnan T.V., Multi-fuzzy subgroups, Int. J. Contemp. Math.

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Sciences, Vol.6, 8 (2011), 365-372.

[12] Sharma P.K., Intuitionistic Fuzzy Groups, ifrsa International Journal of Data warehousing and Mining, vol.1, 2011, iss.1, 86-94.

[13] Shinoj T.K. and Sunil Jacob John, Intuitionistic Fuzzy Multisets, Intl. Journal of Engineering Science and Innovative Technology, Vol.2, 2013, Issue 6, 1-24.

[14] Zadeh L.A., Fuzzy Sets, Information and Control 8, (1965), 338-353.
