INEQUALITIES FOR THE MAXIMUM MODULUS OF A POLYNOMIAL
 RAJKALA

Asst. Prof. Dr. B.R.A.G.C.Kaithal-136027

Abstract

In this paper, Inequalities for the maximum modulus of a polynomial and its derivative studied some of the properties of polynomials with derivative from a given continuous function. The use of inequalities of this kind is a fundamental method in proof of inverse problems of approximation theory.

Keywords:- Continuous functions, Inequalities, Rational Polynomial.

1. INTRODUCTION AND STATEMENT OF RESULTS

The concept of best approximation was introduced into mathematical analysis mainly by the work of the famous Russian mathematician Pi. Chebyshev (1821-1894), who studied some of the properties of polynomials with deviation from a given continuous function. According to Telyakovskiy [1191. "Among those that are fundamental in Approximation Theory are the extremal problems connected with inequalities for the derivative of polynomials. The use of inequalities of this kind is a fundamental method in proofs of inverse problems of approximation theory " In a prize winning essay as a problem of best approximation, Bernstein [22] proved and made considerable use of an inequality concerning the derivative of polynomials. It is interesting that the First result in this area was connected with some investigations of the well- known chemist Mendeleev [95], who asked: if the bound of a rational polynomial over a given interval is known, how large may its derivative be in this interval? Actually Mendeleev wals interested only in a special case in which the polynomial is of degree two. He himself was able to prove that if $p(x)$ is a quadratic polynomial and
$p(x) \downarrow \quad \mid \quad$ on $[-1,1]$, then $\quad p(x) \square 4$ on the same interval. This a best
possible result as is shown by the polynomial.
inequalities (1.1.7) and (1.1.9) were further improved by Aziz and Dawood [101 under the same hypothesis by proving the following interesting results:

THEOREM J_{1} : If $\mathrm{p}(\mathrm{z})$ is a polynomial of degree n which does not vanish in the disk $z \square 1$, then
$\max _{|z|=1}\left|p^{\prime}(z)\right| \leqslant \frac{n}{2}\left[\max _{-}|z|=1|p(z)|-\left|\min _{z \mid=1}\right| p(z) \mid\right]$

The result is sharp and equality holds for the polynomial
$p(z) \square \square \square \square z^{n} \quad$ where

$$
z \square 1 \text {, then }
$$

THEOREM K_{1}. if $\mathrm{P}(\mathrm{z})$ is a
polynomial of degree n which
does not vanish in the disk
$\max _{|z|=R>1}|p(z)| \leq\left(\frac{R^{n}+}{2} \square(z) \square \square z^{n} \square\right.$ where
The result is best possible
and equality in (1.1.11)
holds

for the polynomial
r2013

As a generalization of Theorem GI, Malik [891 proved the
following:
no zeros in
THEOREM L_{I} : if $p(z)$ is a polynomial of degree n having
$z \square K, K \square 1$, then |

The result is best possible and equality in (1.1.12) holds for $\mathrm{p}(\mathrm{z})(\mathrm{z}+\mathrm{k})^{\mathrm{n}}$.

As an improvement of Theorem L, we have the following result due to
Govil [58];
THEOREM M_{I}. If $\mathrm{p}(\mathrm{z})$ is a polynomial of degree n having
no zeros in the disk

$$
\nexists \square K, K \square 1 \text {, then }
$$

$$
\begin{equation*}
\left.\max _{|z|-1}\left|p^{\prime}(z) \leq \leq \frac{n}{1+k}\right| \max _{|z|-1}|p(z)|-|z|-k|p(z)| \right\rvert\, \tag{1.1.13}
\end{equation*}
$$

The result is best possible and equality holds for the polynomial $p(z)=$ $(\mathrm{z}+\mathrm{k})^{\mathrm{n}}$.

Turan [123] considered the class of polynomials having all
zeros in
丮 $1_{\text {and }}$ proved the following:

THEOREM N_{I} If $\mathrm{p}(\mathrm{z})$ is a polynomial of degree n having

The result is sharp and equality in $(1.1,14)$ holds for the
polynomial having all its zeros on

The following refinement of Theorem N was proved by Aziz and Dawood [10].

THEOREM O_{1} : If $\mathrm{p}(\mathrm{z})$ is a polynomial of degree n haying
all its zeros in
2中1, then
$\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{2}\left[|z|=1|p(z)|+\min _{|z|=1}|p(z)|\right]$

The result is best possible and equality in (1.1.15) holds for
$p(z) \square \square z^{n} \square \square \quad$ where

By applying Theorem L_{1} to the polynomial $\mathrm{z}^{\mathrm{n}} \mathrm{p}(1 / \mathrm{z})$ Malik
[89] obtained the following generalization of (1114);

THEOREM P_{I} : If $\mathrm{p}(\mathrm{z})$ is a polynomial of degree n haying
all its zeros in

$\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \stackrel{n}{\max _{1+k|z|=1}}|p(z)|$

The result is sharp and the extremal polynomial is $\mathrm{p}(\mathrm{z})=$
$(\mathrm{z}+\mathrm{k})^{\mathrm{n}}$

Goyil [60] considered the case $K \square 1$ and proved the
following results:

THEOREM Q_{1}. If $\mathrm{p}(\mathrm{z})$ is a polynomial of degree n haying
all its zeros in

$$
\begin{equation*}
\max _{|z| \div 1}\left|p^{\prime}(z)\right| \geq \frac{n}{1+k^{n}}|z|=1|p(z)| \tag{1.1.17}
\end{equation*}
$$

The result is sharp and equality in (1.1.17) holds for $\mathrm{p}(\mathrm{z})$
$=\mathrm{z}^{\mathrm{n}}+\mathrm{k}^{\mathrm{n}}$

Aziz [61 obtained the following refinement of Theorem Q_{1} by involving the moduli of the zeros of the polynomial $\mathrm{p}(\mathrm{z})$:

TIIEOREM R_{1}. If all the zeros of the polynomial $\mathrm{p}(\mathrm{z})=(\mathrm{z}$

- z ,) of degree n lie in

抌 $1_{\text {where }} \quad k \square 1_{\text {then }}$

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us
$\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \sum_{1+k^{n}}^{2} \sum_{j=1}^{n} \begin{gathered}k \\ k+|z,||z|=1\end{gathered}|p(z)|$

The result is sharp and equality in (1.1.18) holds for $\mathrm{p}(\mathrm{z})=$
$\mathrm{z}^{\mathrm{n}}+\mathrm{k}^{\mathrm{n}}$

As a refinement and generalization of Theorem RI, Govil
[59] proved

THEOREM S_{1}. Let $p(z)=\sum_{v=0} a_{v} z^{v}=a_{n} \prod_{j=1}^{i}\left(z-z_{j}\right) ; a_{n} \neq 0$, be a polynomial of

$$
\text { degree } n \geq 2,\left|z_{j}\right| \leq k_{j}, 1 \leq \mathrm{j} \leq n \text { and let } k=\max \left(k_{1}, k_{2}, \ldots \ldots . . k_{\mathrm{n}}\right) \geq 1 \text {, then }
$$

$$
\begin{align*}
& \max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{2}|z|=1|p(z)| \\
& +\frac{2\left|a_{n-1}\right|}{\left(1+k^{n}\right)} \sum_{v=1}^{n}\left(\frac{1}{k+k_{v}}\right)\left(\frac{k^{n}-1}{n}-\frac{k^{n-2}-1}{n-2}\right)+\left|a_{1}\right|\left(1-1 / k^{2}\right), \text { if } n>2 \tag{1.1.19}
\end{align*}
$$

and

$$
\left.\max _{z|:|}: p^{\prime}(z)!>\frac{2}{1+k^{n}}\left(\sum_{1}^{n} \begin{array}{c}
k \\
k+k_{v}
\end{array}\right) \left\lvert\, \begin{array}{c}
\max _{z \mid=1}|p(z)|+\frac{(k-1)^{n}\left|a_{1}\right|}{1+k^{n}} \sum_{v=1}^{n}\left(\frac{1}{k+k_{v}}\right) \tag{1.1.20}
\end{array}\right.\right)+(1-1 / k)\left|a_{1}\right|
$$

In (1.1.19) and (1_1_20), equality holds for $\mathrm{p}(\mathrm{z})=\mathrm{z}^{\mathrm{n}}+\mathrm{k}^{\mathrm{n}}$ ".

Since $\mathrm{klk}+\mathrm{k}_{\mathrm{v}} \geq 1 / 2$ for $1 \leq \mathrm{v} \leq \mathrm{n}$, the above Theorem gives in particular the following improvement of Theorem Q_{1}.

THEOREM T_{1} : If $p(z)=a_{n} \prod_{v=1}^{n}\left(z-z_{v}\right) ; a_{n} \neq 0$, is a polynomial of degree $n \geq 2$,
having all its zeros in
१中 k, where $\mathrm{k} \geq 1$, then
$\left.\max _{z \mid=1}\left|p^{\prime}(z)\right| \geq \frac{n}{1+k^{n}}|z|=1|p(z)|+\frac{n\left|a_{n-1}\right|}{k\left(1+k^{n}\right)}\left[\frac{k^{n}-1}{n}-\frac{k^{n} 2-1}{n-2}\right]+i a_{1} \right\rvert\,\left(1-1 / k^{2}\right)$

$$
\begin{equation*}
\text { if } n>2 \tag{1.1.21}
\end{equation*}
$$

and

$$
\begin{array}{r}
\max _{z \mid=1}\left|p^{\prime}(z)\right| \geq \frac{n}{1+k^{n}}|z|=1|p(z)|+\frac{(k-1)^{n}\left|a_{1}\right|}{k\left(1+k^{n}\right)}+(1-1 / k)\left|a_{1}\right|, \\
\underline{\text { if }} n=2 \tag{1.1.22}
\end{array}
$$

In (1.1 .21) and (1.1.22), equality holds for $p(z)=z^{n}+z^{k}$

For quite some time it was believed that if $\mathrm{p}(\mathrm{z}) \# 0$ in

$$
\text { q } \uparrow k, \mathrm{k} \square 1 \text {, then }
$$

2013
the inequality analogous to $(1,1,12)$ should be

$$
\begin{equation*}
\left.\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k^{n}}\left|\max _{z \mid=1}\right| p(z) \right\rvert\,, \tag{1.1.23}
\end{equation*}
$$

till Professor E.B. Saff gave the example p(z) $=(z-1 / 2)(z+1 / 3)$ to counter this belief. For polynomials of degree n , having no zeros in $z \square k, \mathrm{k} \square 1$, Gbvil [61] proved the following:

THEOREM U_{1}. If $\mathrm{p}(\mathrm{z})$ is a polynomial of degree n , having all its zeros
on $z \square k \not$ where $\mathrm{k} \square 1$ then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-1}+k^{n}} \max _{z \mid=1}|p(z)| . \tag{1.1.24}
\end{equation*}
$$

Govil [62] obtained inequality (1.1.23) with an extra condition by proving the following:

THEOREM V_{1}. If $\mathrm{p}(\mathrm{z})$ is a polynomial of degree n such that $\mathrm{p}(\mathrm{z})$ \# 0 in
$z \square k,|\mathrm{k}| \square 1$

$$
\begin{equation*}
\max _{|z|-1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k^{n}}|z|=1|p(z)| \tag{1.1.25}
\end{equation*}
$$

provided

$$
z \square k \text { where } \mathrm{k} \square 1 \text {, then }
$$

$z \square 1 \mid$, where $\mathrm{q}(\mathrm{z})=z^{n} p(1 / z)$.Equality in
(1.1.25) holds for $\mathrm{p}(\mathrm{z})=\mathrm{z}^{\mathrm{n}}+\mathrm{k}^{\mathrm{n}}$.

It was shown by Aziz and Mohammad [121 that
if $p(z)$ is a polynomial
of degree n which does not vanish in

$$
\begin{equation*}
M(P, R) \leq\left(\frac{R+k}{1+k}\right)^{n} M(P, 1) \text { for } 1 \leq R \leq k^{2} \tag{1.1.26}
\end{equation*}
$$

By applying inequality (1.1.26) to the polynomial $\mathrm{z}^{\mathrm{n}} \mathrm{p}(1 / \mathrm{z})$, Jain [82] was able to prove the following result:

THEOREM W_{1}. If $\mathrm{p}(\mathrm{z})$ is a polynomial of degree n having all its zeros
in $z \square k,|\mathrm{k}| \square 1$, then

Equality holds in (1.1.27) for $\mathrm{p}(\mathrm{z})=(\mathrm{z}+\mathrm{k})^{\mathrm{n}}$

For polynomials not vanishing in
$z \mid \Downarrow 1$ Rivlin [112] proved the

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
following:

THEOREM X_{1}. If $p(z)=\sum_{v=0}^{n} a_{v} z^{\nu}$ is a polynomial of degree $n, p(z) \neq 0$ in
$z \square 1 \mid$, then

$$
\begin{equation*}
M(p, r) \geq\left(\frac{1+r}{2}\right)^{n} M(p, 1) \text { for } \mathrm{r} \leq \mathrm{I} \tag{1.1.28}
\end{equation*}
$$

The result is best possible and the external polynomial is

$$
p(z)-\left(\frac{\alpha+\beta z}{2}\right)^{n},|\alpha|=|\beta| .
$$

Extensions of Theorem X_{1} where considered by Govil [63]. After rioting that (1.1.28) can be replaced by some what more general inequality
$M(p, r) \geq\binom{ 1+r}{1+R}^{n} M(P, R)$ for $0 \leq r \leq R \leq 1$,
he proved:

THEOREM Y_{1} Let $\mathrm{p}(\mathrm{z})$ be a polynomial of degree n , and $\mathrm{p}(\mathrm{z}) \square 0$ in

$M(p, r) \geq\left(\frac{1+r}{1+R}\right)^{n}\left[1 /\left(1-\frac{(1-R)(R-r) n}{4}\left(\frac{1+r}{1+R}\right)^{n-1}\right)\right] M(p, R)$

For the class of polynomials having no zeros in

$$
z \mid \downarrow k, \mathrm{k} \square 1 \text {, inequality }
$$

(1.1.29) was generalized by Dewan and Bidkham 1411 by proving the following result:

$$
n
$$

THEOREM Z_{1}. If $\mathrm{p}(\mathrm{z})=\quad \square a z^{v}$ is a polynomial of degree n such that it

$$
v \square 0
$$

has no zeros in井中 $k, \mathrm{k} \square 1$ then for $0 \square r \square \square \square 1$
$M(p, r) \geq\binom{ r+k}{\lambda+k} M(p, \lambda)$

The result is best possible and equality holds for the polynomial

$$
p(z)=\left(\frac{z+k}{\lambda+k}\right)^{n}
$$

For the class of polynomials satisfying
$p(z) \square \square z^{n} p(1 / z), \square| | \square 1$, the following result is proved by Govil [60],

Mara and Rodriguez [100] and Saff and Sheil-Small
independently of each other:
n
THEOREM 2A1. If $\mathrm{p}(\mathrm{z})=$ $\square a z^{v} \quad$ is a self-inversive polynomial of $v \square 0$
degree n then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right|=\frac{n}{2}|z|=1|p(z)| \tag{1.1.32}
\end{equation*}
$$

It was proposed by Q.1. Rahman to study the class of
polynomials satisfying $\quad p(z) \square z^{n} p(1 / z)$ and obtain inequalities analogous
to (1.1.6) and Govil, Jain and Labelle [66] proved the following result in this direction:

THEOREM Z111. If $p(z)$ is a polynomial of degree n satisfying
$p(z) \square z^{n} p(1 / z) \quad$ and has all its zeros either in the left half-plane or in the
night half plane, then

$$
\begin{align*}
& \left.\max _{\mid z^{\prime}-1}\left|p^{\prime}(z)\right| \leq \frac{n}{\sqrt{2}}\left|\max _{z \mid=1}\right| p(z) \right\rvert\, \tag{1.1.33}\\
& \left.\max ^{|z|=R>1}|p(z)| \leq \frac{R^{n}+\sqrt{2}-1}{\sqrt{2}}\left|\max _{z \mid=1}\right| p(z) \right\rvert\, \tag{1.1.34}
\end{align*}
$$

and

$$
\begin{equation*}
\max _{z \mid-1}\left|p^{\prime}(z)\right| \geq \frac{n}{2}|z|=1|p(z)| \tag{1.1.35}
\end{equation*}
$$

The inequality $(1,1.35)$ is sham and equality holds for

Dewan and Govil [44] proved the inequality (1.1.35) by removing the condition that the zeros of the polynomial $\mathrm{p}(\mathrm{z})$ lie either in the left half-plane or in the right half-plane. This was later proved independently by Frappier and Rahman [52] and Aziz [6].

THEOREM $Z_{\text {I }}$ If $p(z)=$
$p(z) \square z^{n} p(1 / z)$, then
n
$\square a z^{v} \quad$ is a polynomial of degree n satisfying
$v \square 0$

$\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{2}|z|=1|p(z)|$

The result is best possible and equality holds for the polynomial $\mathrm{P}(\mathrm{z})=1+\mathrm{z}^{\mathrm{n}}$.

Other types of extremal problems have been considered among others by Rahman [108], Giroux and Rah.man [56], Frappier [51], ErdOs [49], lbragimov and Momedov [75], Mamedhamov [90], Newman [99], Dewan and Bidkham [41], Giroux, Rahman and Schmeisser [57], Govil [64], Abi-Khuzam [I], Ducan [47] and Aziz and Rather[15].

References:-

1. Pi. Chebyshev
2. Telyakovskiy
3. Aziz and Rather
4. Malik Govil
5. Hischhom
