International Journal of Engineering, Science and Mathematics

Vol. 6 Issue 2, June 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Certain Results on Quasi- Hadmard products

R K Laddha

Department of Mathematics, MLV College, Bhilwara, India

	ABSTRACT
	In this paper,we found certain results on Quasi-Hadmard
	products. For analytic starlike convex p-valent general
VENTANOPDS	function.
KEYWORDS:	
- p-valent, infinite series,	
summation formula	
	Copyright © 2017 International Journals of Multidisciplinary
	Research Academy. All rights reserved.
1. Introduction: Many authors [1],[2],[5],[8],[9],[10] etc., studied the various classes	
of the analytics starlikes convex (Univalent as well p-valent) functions and there	
important properties. In this paper we study the Quasi-Hadamard Products for the	
class $T_{p,n}^*$ (A, B, α) which introduce by Singh and Sohi[5].	
Let $S_{p,n}$ denote the class of functions[5] of the form	
$f(z) = z^p + \sum_{k=n+p} a_k z^k$; $a_k \ge 0$ (1.1)	
Where $n, p \in N$ and $f(z)$ is analytic and p-valent in the unit disc	
$E = \{z; z < 1\}, \text{for fix}$	sed A and B, $-1 \le B < A < 1$; a function of the class $S_{p,n}$ is

said to be in class $S_{p,n}^*$ (A, B, α) iff

$$\frac{zf'(z)}{f(z)} < \frac{p + [(p - \alpha)A + \alpha B]z}{1 + Bz}, z \in E \quad (1.2)$$

Or equivalently $f(z) \in S_{p,n}^*$ (A, B, α) iff

$$\left| \frac{zf'(z)}{f(z)} - p \right| / ((p - \alpha)A + \alpha B - B \frac{zf'(z)}{f(z)} \right| < 1, z \in E$$
 (1.3)

Again f(z) is said to belong to the class $K_{p,n}^*$ (A, B, α) iff

$$\frac{\mathbf{z}f'(\mathbf{z})}{\mathbf{p}} \in S_{p,n}^* (A, B, \alpha) \tag{1.4}$$

Also, if $T_{p,n}$ denotes the subclass of $S_{p,n}$ consisting of functions of the form

$$f(z) = z^p - \sum_{k=n+p} a_k z^k$$
; $a_k \ge 0$ (1.5)

(Where $n, p \in N$, and f(z) is analytic and p-valent in E) then we define

$$T_{p,n}^*(A, B, \alpha) = S_{p,n}^*(A, B, \alpha) \cap T_{p,n}$$
 (1.6)

$$C_{n,n}(A,B,\alpha) = K_{n,n}(A,B,\alpha) \cap T_{n,n}(1.7)$$

Here, we study the class $T_{p,n}$ of p-valent functions and their corresponding subclass $T_{p,n}^*(A,B,\alpha)$ and $C_{p,n}(A,B,\alpha)$ of starike and convex functions. Our classes are generalizations of several subclasses available in the mathematical literature, we mention below some important special cases:

- (i) For $\alpha = 0$, we gets the class $T_{p,n}^*(A, B)$ and $C_{p,n}(A, B)$ studied by Sohi[7].
- (ii) For p=1, we get the class of functions f(z) which are analytic and univalent in unit disc E. In further substituations $\alpha=0$; $A=1-2\delta$ and B=-1, we get the subclass that was studied by Srivastavaet. al.[9].
- (iii) For n = 1 and p = 1, we get the class of functions f(z) which are analytic and univalent in E, and the corresponding classes $T_{1,1}^*(A, B)$ and $C_{1,1}(A, B)$ were studied by Amrik Singh and N.S Sohi[6].
- (iv) On setting $A = \beta 2\alpha\beta\gamma$ and $B = -\beta\gamma$ in [2]. further for $\gamma = 1$, we get the class of functions that were studied by seikinet al.[4] For the class $T_{p,n}^*(A,B,\alpha)$ and $C_{p,n}(A,B,\alpha)$, we have the following coefficient [5] contained in.

Lemma 1: If functions $f(z) \in T_{p,n}$ satisfy the condition

$$\sum_{k=n+p}^{\infty} [(1-B)k - (1-A)p - (A-B)] \alpha_k \le (A-B(p-\alpha)(1.8)$$

 $f(z) \in T_{p,n}^*(A, B, \alpha)$. The equality in (1.8) is attained by the function

$$f_1(z) = z^p - \frac{(A-B)(p-\alpha)z^k}{[(1-B)k - (1-A)p - (A-B)\alpha]} (k \ge n + p)(1.9)$$

Lemma2 If functions If functions $f(z) \in T_{p,n}$ satisfy the condition

$$\sum_{k=n+p}^{\infty} \left(\frac{k}{p}\right) \left[(1-B)k - (1-A)p - (A-B)\alpha \right] \alpha_k \le (A-B)(p-\alpha).$$

(1.10)

Then $f(z) \in C_{p,n}(A, B, \alpha)$. The equality in (1.10) is attained by the function

$$f_2(z) = z^p - \frac{p(A-B)(p-\alpha)z^k}{k[(1-B)k-(1-A)p-(A-B)\alpha]} (k \ge n+p)$$
 (1.11)

2. Quasi- Hadamard Products: Let $f_j(z)(j = 1, ... m)$ satisify(1.5), that is

$$f_i(z) = z^p - \sum_{k=n+p}^{\infty} a_{ki} z^k \ (j = 1, \dots, m)$$
 (2.1)

We denote by $f_1 * f_2 * \dots f_m *$, the Quasi- Hadamard Product of the functions f_1, f_2, \dots, f_m and defined as

$$f_1(z) * f_2(z) * \dots \dots f_m(z) = z^p - \sum_{k=n+p}^{\infty} a_{k_1} a_{k_2 a_{k_3}} \dots \dots a_{k_m} z^k$$

With the help of Lemma 1 and 2, we obtain the Quasi- Hadamard Products for the classes $T_{p,n}^*(A, B, \alpha)$ and $C_{p,n}(A, B, \alpha)$ given by.

Theorem1: If $f_i(z) \in T_{p,n}^*(A, B, \alpha_i) (j = 1, 2, 3 ... m)$ then

$$(f_1*f_2*\dots ...f_m)(z)\in T_{p,n}^*(A,B,\beta)$$

where

$$\beta = p - \frac{(1-B)\prod_{j=1}^{m}(p-\alpha_j)}{\prod_{j=1}^{m}[(1-B)n + (A-B)(p-\alpha_j)] - (A-B)\prod_{j=1}^{m}(p-\alpha_j)}$$
(2.2)

The result is sharp for functions

$$f_j(z) = z^p - \frac{(A-B)(p-\alpha_j)z^{n+p}}{[(1-B)n-(A-B)(p-\alpha_j)]} (j=1, \dots m)$$
 (2.3)

Theorem $2f_j(z) \in C_{p,n}(A,B,\alpha_j) (j=1,2,3\dots m)$ then

$$(f_1 * f_2 * \dots f_m)(z) \in C_{n,n}(A, B, \delta)$$

where

$$\delta = p - \frac{(1-B)p^{m-1} \prod_{j=1}^{m} (p-\alpha_j)}{(n+p)^{m-1} \prod_{j=1}^{m} [(1-B)n + (A-B)(p-\alpha_j)] - (A-B)p^{m-1} \prod_{j=1}^{m} (p-\alpha_j)}$$
(2.4)

The result is sharp for the function the function

$$f_j(z) = z^p - \frac{(A-B)(p-\alpha_j)z^{n+p}}{(n+p)[(1-B)n-(A-B)(p-\alpha_j)]} (j=1, \dots m)$$
 (2.5)

Theorem 3: If $f_i(z) \in T_{p,n}^*(A, B, \alpha_i) (j = 1, 2, 3 ... m)$ and

$$g_i(z) \in C_{p,n}(A, B, \alpha_j) (i = 1,2,3 ... q)$$
then

Then

$$(f_1 * f_2 * \dots * f_m * g_1 * g_2 * \dots * g_q)(z) \in C_{p,n}(A, B, \gamma)$$

Where

$$\gamma = p - \frac{1}{L} [(1 - B)np^{q-1} \prod_{j=1}^{m} (p - \alpha_j) \prod_{i=1}^{q} (p - \beta_i)$$
 (2.6)

and

$$L = \{(n+p)^{q-1} \prod_{j=1}^{m} [(1-B)n + (A-B)(p-\alpha_j)] \prod_{i=1}^{q} [(1-B)n + (A-B)(p-\beta_i) - p^{q-1}(A-B) \prod_{j=1}^{m} (p-\alpha_j) \prod_{j=1}^{m} (p-\beta_i) \}$$
(2.7)

The result is sharp for functions

$$f_j(z) = z^p - \frac{(A-B)(p-\alpha_j)z^{n+p}}{[(1-B)n-(A-B)(p-\alpha_j)]} (j=1, \dots m)$$
 (2.8)

$$g_i(z) = z^p - \frac{(A-B)(p-\beta_i)z^{n+p}}{(n+p)[(1-B)n+(A-B)(p-\beta_i)]} (i=1, \dots q)$$
 (2.9)

Proof of theorem1

We invoke the principle of mathematical induction to prove the theorem for m = 1,

we find that $\beta = \alpha_1$

Now, for m = 2, we have only to find the largest β such that

$$\sum_{k=n+p}^{\infty} \frac{[(1-B)k - (1-A)p - (A-B)\beta}{(A-B)(p-\beta)} \alpha_{k_1} \alpha_{k_2} \le 1$$
 (2.10)

Since $f_j(z) \in T^*_{p,n}(A,B,\alpha_j)$ (j=1,2), from lemma 2 we have

$$\sum_{k=n+p}^{\infty} \left(\frac{[(1-B)k - (1-A)p - (A-B)\alpha_j}{(A-B)(p-\alpha_j)} \right) \alpha_j \le 1; (j=1,2)$$
 (2.11)

Then, using Cauchy-Schwarz inequality and following the Principle Mathematical Induction rule we can prove it.

Further, if the function $f_i(z)$ are defined by (2.3), then we have

$$f_1(z) * f_2(z) * \dots \dots f_m(z) = z^p - \frac{(A-B)\sum_{j=1}^m (p-\alpha_j)}{\prod_{j=1}^m [(1-B)n + (A-B)(p-\alpha_j)]} z^{n+p}$$

$$= z^p - A_{n+p} z^{n+p}$$
(2.12)

Which shows that

$$\sum_{k=n+n}^{\infty} \left(\frac{[(1-B)k + (1-A)p - (A-B)\beta}{(A-B)(p-\beta)} \right) A_k$$

$$= \left(\frac{[(1-B)n + (A-B)(p-\beta)}{(A-B)(p-\beta)} \{(A-B) \prod_{j=1}^{m} \frac{(p-\alpha_j)}{[(1-B)n + (A-B)(p-\alpha_j)} \} \right) (2.13)$$

Consequently, the result stated in theorem 1 is sharp for functions $f_j(z)$ defined by (2.3)

Proof of theorem2:

The result is obvious for m = 1.

For m = 2, we have to find the largest δ such that

$$\sum_{k=n+p}^{\infty} \left\{ \left(\frac{k}{p} \right) \frac{\left[(1-B)k - (1-A)p - (A-B)\delta \right]}{(A-B)(p-\delta)} \right\} \alpha_{k_1} \alpha_{k_2} \le 1$$
 (2.14)

Using lemma 3 and proceeding and similar lines as in theorem1 we can we prove the theorem 2. **Proof of theorem3:** we know that if $f(z) \in T_{p,n}^*(A, B, \alpha)$ and $g(z) \in$

$$C_{p,n}(A,B,\beta)$$
,

Then $(f * g)(z) \in C_{p,n}(A, B, \gamma)$, where

γ

= p

$$-\frac{(1-B)(p-\alpha)(p-\beta)}{[(1-B)n+(A-B)(p-\alpha)][(1-B)n+(A-B)(p-\beta)]-(A-B)(p-\alpha)(p-\beta)}$$

Thus theorem1 and theorem2 together lead to the desired result.

3. Special Cases of theorem1

The theorem 1 through 3 is quite integral as they involve general classes of function. For the sake of illustrations, we mention below some interesting(new and known) special theorem for theorem 1 only

(I) Letting
$$\alpha_i = \alpha$$
 $(j = 1, m)$ in theorem 1, we get

Corollary1.

If
$$f_j(\mathbf{z}) \in T^*_{p,n}(A,B,\alpha)$$
; $(j=1,2,\dots m)$, then

$$(f_1(z)*f_2(z)*\dots..f_m)(z)\in T_{p,n}^*(A,B,\beta^*)$$

Where

$$\beta^* = \frac{(1-B)(p-\alpha)^m}{[(1-B)n + (A-B)(p-\alpha)]^m - (A-B)(p-\alpha)^m}$$
(3.1)

The result is sharp for functions

$$f_j(z) = z^p - \frac{(A-B)(p-\alpha_j)z^{n+p}}{[(1-B)n-(A-B)(p-\alpha)]} (j=1, \dots m)$$
(3.2)

Further, for m=2, p=1, A=1 and $\beta=0$, we get the result obtained earlier by srivastava and Chatterjea[8]'

(II) Setting p = 1; n = 1 in theorem1, we have

Corollary 2

If
$$f_{j}(z) \in T_{1,1}^{*}(A, B, \alpha_{j}); (j = 1, 2, m)$$
, then
$$(f_{1} * f_{2} * f_{m})(z) \in T_{1,1}^{*}(A, B, \beta^{1}), \text{ where}$$

$$\beta' = \frac{(1-B)\prod_{j=1}^{m}(1-\alpha_{j})}{\prod_{j=1}^{m}[1+A-2B-(A-B)\alpha_{j}]-\prod_{j=1}^{m}(1-\alpha_{j})} (3.3)$$

$$f_{j}(z) = z - (A-B)(\frac{1-\alpha_{j}}{(1+A-2B)-(A-B)\alpha_{j}})z^{2}(j = 1, ... m) \quad (3.4)$$

Further, for A=1, B=0, we get the known result obtained by owa[1], Also for m=2 (with A = 1, B = 0) we arrive at another known result silverman[3].

(III) Again, if we take A=1, B = 0 in theorem 1-3, we get the result for the classes studied by Tariq[10, p. 159 Eqs (4.5.2) and (4.5.3)] and by owa[2]. Also, taking $\alpha = 0$ in theorems 1-3, we get the result for the classes studied by Singh and sohi[6].

Conclusion: In this paper we studied certain classes of MultivalentFunctions, for certain results on Quasi Hadmard products. We also prove the corollary on it, with known and unknown result.

Acknowledgment:

I am very thankful toDr. S. P. Goyal for his expert guidance. I am also thankful to my wife for their support and motivation.

References:

- OwaS(1993)., On the Hadamard Product of univalent functions, Tamkang J. Math., 14, 15-21.
- 2. Owa S.,(1985), On the certain classes of p-valent functions with negative coefficients, Simon Stevin,59, 1-15.

- Schild A., Silverman H., (1975), Convolutions of univalent functions with negative coefficients Ann. Univ. Marial Curie – Slodowska Sect., 29, 99-107.
- 4. Seiken T., Nishimoto K., (1986), AN Application of fractional calculus, J. Coll. Engg. NinhonUniv B-27, 31-37.
- 5. Singh A., Sohi N.S., (1995), On a class of multivalent functions with negative and missing coefficients Pure Appl. Math Sci,13,53-63.
- Singh A., Sohi N.S., (1995), on certain subclasses of univalent functions, Pure App.l Math, Sci, 12, 65-72.
- 7. Sohi N.S.(1990), Distortion theorems involving certain operators of fractional calculus on the class of p-valent functions, college of Engg. Nihon Univ Fractional calculus and its applications, international conf. proc.
- 8. Srivastava H.M., Owa S., Chatterja S.K.(1987), A note on certain classes of starlike functions, Rend., Sem. Mat. Univ. Padova,77,115-124.
- 9. Srivastava H.M., Saigo M.,Owa S.,()1988), A class of distortion theorems involving certain operators of fractional calculus, J. Math. Analysis & Appl 2(131),412-420.
- 10. Tariq O. Salim,(1998), A study of general classes of polynomials, special functions, and integral operators with applications, Ph.D. Thesis, Univ of Raj.