International Journal of Engineering, Science and Mathematics

Vol. 12 Issue 4, April 2023

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in , Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

NOTE ON $[\underline{N}, p_n^{\alpha}, \beta; \delta]_k$ SUMMABILITY FACTORS

Dr. DHIRENDHRA SINGH

Department of Mathematics

Pandit Lalit Mohan Sharma Sri Dev Suman Uttarakhand University Campus Rishikesh Dehradun

and

Dr. PRAGATI SINHA

Mangalmay Institute of Engineering and Technology Knowledge Park II Greater Noida-201310

Abstract: In this paper we have proved a theorem for $|\underline{N}, p_n^{\alpha}, \beta, \delta|_k$ summability.

However our theorem is as follows

THEOREM:

Let $\{p_n\}$ be a positive non-increasing sequence such that $p_n^{\alpha} \to \infty$, and

$$\sum_{n=v+1}^{\infty} \left(\frac{p_n^{\alpha}}{P_n^{\alpha}}\right)^{\beta(\delta k+k-1)-k} \frac{1}{p_{n-1}^{\alpha}} = O\left\{\left(\frac{P_v^{\alpha}}{p_v^{\alpha}}\right)^{\beta(\delta k+k)-k} \frac{1}{P_v^{\alpha}}\right\}.$$

If $\sum a_n$ is $[\underline{N}, p_n; \delta]_k$, bounded and $\{\lambda_n\}$ is a sequence such of that non-negative, non-increasing,

Such that
$$p \sum_{n=1}^{\alpha} \lambda_n < \infty$$

and

$$P_n^{\alpha} \Delta \lambda_n = O(p_n^{\alpha} \lambda_n)$$

then the series $\sum a_n \lambda_n$ is summable $|\underline{N}, p_n^{\alpha}, \beta, \delta|_k$, $k \geq 1$.

1. DEFINITIONS AND NOTATIONS

SINGH and SHARMA [8]-Let $\sum a_n$ be a given infinite series with s_n for its n-th partial sums. Define

$$p_n^{\alpha} = \sum_{v=0}^{n} \quad a_{n-v}^{\alpha-1} p_v \tag{1.1}$$

where

$$A_n^{\alpha} = (n + \alpha n) = \frac{(\alpha + 1)(\alpha + 2)(\alpha + 3)...(\alpha + n)}{n}, \alpha > -1$$

and $\{p_n\}$ a sequence of real numbers such that $p_0>0$, $p_n\geq 0$, n=1,2,3,...

$$P_n^{\alpha} = \sum_{v=0}^n p_v^{\alpha}.$$

Let $\{t_n^{\alpha}\}$ be the sequence of $(\underline{N}, p_n^{\alpha})$ mean of the sequence $\{s_n\}$,

$$t_n^{\alpha} = \frac{1}{P_n^{\alpha}} \sum_{v=0}^n \quad p_v^{\alpha} s_v, p_n^{\alpha} \neq 0$$
 (1.2)

The series $\sum a_n$ is said to be summable $|N, p_n^{\alpha}|_k$, $1 \le k$, if

BOR [1]

$$\sum_{n=1}^{\infty} \left(\frac{P_n^{\alpha}}{p_n^{\alpha}}\right)^{k-1} |\Delta t_{n-1}^{\alpha}|^k < \infty, \tag{1.3}$$

and it is said to be summable $|N^-, p_n^{\alpha}; \delta|_k$, $k \ge 1$ and $\delta \ge 0$, if BOR [5]

$$\sum_{n=1}^{\infty} \left(\frac{P_n^{\alpha}}{p_n^{\alpha}}\right)^{\delta k + k - 1} |\Delta t_{n-1}^{\alpha}|^k < \infty, \tag{1.4}$$

where

$$\Delta t_{n-1}^{\alpha} = \frac{p_n^{\alpha}}{P_n^{\alpha} P_{n-1}^{\alpha}} \sum_{v=1}^{n} P_v^{\alpha} a_v, n \ge 1$$
 (1.5)

In the special case when $\delta=0$ and $\alpha=1,|N^-,p_n^\alpha;\delta|_k$ summability is that same as $|N^-,p_n|_k$ summability.

Moreover, the series $\sum a_n$ is said to be summable $[N^-, p_n, \beta; \delta]_k$, $k \ge 1$, $\delta \ge 0$ and β = real number, if

$$\sum_{n=1}^{\infty} \left(\frac{P_n^{\alpha}}{p_n^{\alpha}}\right)^{\beta(\delta k + k - 1)} |\Delta t_{n-1}^{\alpha}|^k < \infty$$

However for $p_n = 1$, for all n, the above definition reduces to $[C, 1, \beta; \delta]_k$.

The series $\sum a_n$ is said to be $[N, p_n]_k$, $k \ge 1$, if BOR [1]

$$\sum_{v=1}^{n} p_{v} |s_{v}|^{k} = O(P_{n}), as n \to \infty$$

$$(1.6)$$

and it is said to be $[\underline{N}, p_n; \delta]_k$ bounded, $k \ge 1$, if BOR [3]

$$\sum_{v=1}^{n} \left(\frac{P_{v}}{p_{v}}\right)^{\delta k} p_{v} |s_{v}|^{k} = O(P_{n}), \text{ as } n \to \infty$$

$$(1.7)$$

If we take $\delta = 0$, then $[N^-, p_n; \delta]_k$ boundedness is the same as $[N^-, p_n]_k$ boundedness.

Now, we shall define $[N^{-}, p_n^{\alpha}, \beta; \delta]_k$ as follows;

The series $\sum a_n$ is said to be $[N^-, p_n^\alpha, \beta; \delta]_k$; $(k \ge 1, \delta \ge 0 \text{ and } \beta \text{ is real number})$ if

$$\sum_{v=1}^{n} \left(\frac{p_r}{P_r}\right)^{\beta(\delta k + k) - k} p_v^{\alpha} |s_v|^k = O(P_n^{\alpha}), \text{ as } n \to \infty$$

$$(1.8)$$

A sequence $\{\lambda_n\}$ is said to be convex (ZYGMUND [9]), if $\Delta^2 \lambda_n \geq 0$ for every positive integer n, where $\Delta^2 \lambda_n = \Delta \lambda_n - \Delta \lambda_{n+1}$ and $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$.

2. INTRODUCTION:

BOR [4] has proved the following theorem for $|N^-, p_n|_k$ summability.

THEOREM A:

Let $\{p_n\}$ be a positive non-increasing sequence such that $P_n \to \infty$, as $n \to \infty$ and

$$\frac{1}{p_n} = O(n) \tag{2.1}$$

If $\sum a_n$ is $[N^-, p_n]_k$ bounded and $\{\lambda_n\}$ is a convex sequence such that $\sum p_n \lambda_n$ is convergent, then the series $\sum a_n \lambda_n$ is summable $|\underline{N}, p_n|_k$, $k \ge 1$.

If we take k = 1 in this theorem, then we get a result of CHEN [6].

Later on Theorem A of BOR [4] was proved by SEYHAN [7] under the weaker condition. However his theorem is as follows.

THEOREM B:

Let $\{p_n\}$ be a positive non-increasing sequence such that $P_n \to \infty$, as $n \to \infty$. If $\sum a_n$ is $[N^-, p_n]_k$ bounded and $\{\lambda_n\}$ is a sequence of non-negative, non-increasing, and $\sum p_n \lambda_n$ is convergent, $P_n \Delta \lambda_n = O(p_n \lambda_n)$, then the series $\sum a_n \lambda_n$ is summable $\left|\underline{N}, p_n\right|_k$, $k \ge 1$.

3 We shall prove the above theorem for $|\underline{N}, p_n^{\alpha}, \beta; \delta|_k$ summability.

THEOREM:

Let $\{p_n\}$ be a positive non-increasing sequence such that $P_n^{\alpha} \to \infty$, as $n \to \infty$, and

$$\sum_{n=v+1}^{\infty} \left(\frac{P_n^{\alpha}}{p_n^{\alpha}}\right)^{\beta(8k+k-1)-k} \frac{1}{P_{n-1}^{\alpha}} = O\left\{\left(\frac{P_v^{\alpha}}{p_v^{\alpha}}\right)^{\beta(8k+k)-k} \frac{1}{P_v^{\alpha}}\right\},\tag{3.1}$$

If $\sum a_n$ is $[N^-, p_n; \delta]_k$, bounded and $\{\lambda_n\}$ is a sequence of non-negative, non-increasing,

$$\sum p_n^{\alpha} \lambda_n < \infty \tag{3.2}$$

and

$$P_n^{\alpha} \Delta \lambda_n = O(p_n^{\alpha} \lambda_n) \tag{3.3}$$

then the series $\sum a_n \lambda_n$ is summable $|N^-, p_n^{\alpha}, \beta; \delta|_k$, $k \ge 1$.

4. We need the following lemma for the proof of our theorem.

Lemma:

If $\{\lambda_n\}$ is a sequence such that it is non-negative, non-increasing and $\sum p_n^{\alpha} \lambda_n$ is convergent, then

$$\sum p_n^{\alpha} \lambda_n = O(1) \ \text{as} \quad n \to \infty$$
 (4.1)

$$\sum p_n^{\alpha} \Delta \lambda_n < \infty \text{ as } n \to \infty$$
 (4.2)

The proof of above lemma follows on the lines of BOR [2].

5. PROOF OF THE THEOREM:

Let (T_n^{α}) denotes the (N, p_n^{α}) mean of the series $\sum a_n \lambda_n$.

Then, by definition, we have

$$T_n^{\alpha} = \frac{1}{P_n^{\alpha}} \sum_{v=0}^n \quad p_v^{\alpha} \sum_{r=0}^v \quad a_r \lambda_r = \frac{1}{P_n^{\alpha}} \sum_{v=0}^n \quad (P_n^{\alpha} - P_{v-1}^{\alpha}) a_v \lambda_v$$

then, we have

$$T_n^{\alpha} - T_{n-1}^{\alpha} = \frac{p_n^{\alpha}}{P_n^{\alpha} P_{n-1}^{\alpha}} \sum_{v=1}^n \quad p_{v-1}^{\alpha} a_v \lambda_v; n \ge 1, (P_{-1}^{\alpha} = 0)$$

By Abel's transformation we have

$$T_{n}^{\alpha} - T_{n-1}^{\alpha} = \frac{-p_{n}^{\alpha}}{P_{n}^{\alpha} P_{n-1}^{\alpha}} \sum_{v=1}^{n-1} p_{v}^{\alpha} s_{v} \lambda_{v} + \frac{p_{n}^{\alpha}}{P_{n}^{\alpha} P_{n-1}^{\alpha}} \sum_{v=1}^{n-1} P_{v}^{\alpha} s_{v} \Delta \lambda_{v} + \frac{p_{n}^{\alpha} s_{n} \lambda_{n}}{P_{n}^{\alpha}}$$

$$= T_{n,1}^{\alpha} + T_{n,2}^{\alpha} + T_{n,3}^{\alpha}, say$$

To prove the theorem, by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} \left(\frac{P_n^{\alpha}}{p_n^{\alpha}}\right)^{\beta(8k+k-1)} \left|T_{n,r}^{\alpha}\right|^k < \infty, \text{ for } r = 1,2,3$$
 (5.1)

Since $\lambda_n = O\left(\frac{1}{P_n^{\alpha}}\right) = O(1)$, by (4.1) and applying Hölder's inequality with indices

k and k', where $\frac{1}{k} + \frac{1}{k'} = 1$ and by using (3.1), we get that

$$\sum_{n=2}^{m+1} \left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\beta(\delta k+k-1)} \left|T_{n,1}^{\alpha}\right|^{k} \leq$$

$$\leq \sum_{n=2}^{m+1} \left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\beta(\delta k+k-1)} \left|\frac{p_{n-1}^{\alpha}}{P_{n}^{\alpha}P_{n-1}^{\alpha}}\sum_{v=1}^{n-1} p_{v}^{\alpha}s_{v}\lambda_{v}\right|^{k}$$

$$\leq \sum_{n=2}^{m+1} \left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\beta(\delta k+k-1)-k} \frac{1}{(P_{n-1}^{\alpha})^{k}} \left\{\sum_{v=1}^{n-1} p_{v}^{\alpha}\lambda_{v}|s_{v}|\right\}^{k}$$

$$\leq \sum_{n=2}^{m+1} \left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\beta(\delta k+k-1)-k} \frac{1}{P_{n-1}^{\alpha}}\sum_{v=1}^{n-1} p_{v}^{\alpha}(\lambda_{v})^{k}|s_{v}|^{k} \left\{\frac{1}{P_{n-1}^{\alpha}}\sum_{v=1}^{n-1} p_{v}^{\alpha}\right\}^{k-1}$$

$$= O(1) \sum_{v=1}^{m} p_{v}^{\alpha}(\lambda_{v})^{k}|s_{v}|^{k} \sum_{n=v+1}^{m+1} \left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\beta((\delta k+k-1)-k} \frac{1}{P_{n-1}^{\alpha}}$$

$$= O(1) \sum_{v=1}^{m} \left(\frac{P_n^{\alpha}}{p_n^{\alpha}} \right)^{\beta(\delta k + k) - k - 1} |s_v|^k (\lambda_v)^k$$

$$= O(1) \sum_{v=1}^{m} p_n^{\alpha} |s_v|^k (\lambda_v) (\lambda_v)^{k - 1} \left(\frac{P_v^{\alpha}}{p_v^{\alpha}} \right)^{\beta(\delta k + k) - k}$$

$$= O(1) \sum_{v=1}^{m} p_n^{\alpha} |s_v|^k (\lambda_v) \left(\frac{P_v^{\alpha}}{p_v^{\alpha}} \right)^{\beta(\delta k + k) - k}$$

$$= O(1) \sum_{v=1}^{m-1} \Delta \lambda_v \sum_{z=1}^{v} \left(\frac{P_z^{\alpha}}{p_z^{\alpha}} \right)^{\beta(\delta k + k) - k} p_z^{\alpha} |s_z|^k$$

$$+ + O(1) \lambda_m \sum_{v=1}^{m} \left(\frac{P_v^{\alpha}}{p_v^{\alpha}} \right)^{\beta(\delta k + k) - k} p_v |s_v|^k$$

$$= O(1) \sum_{v=1}^{m-1} \Delta \lambda_v P_v^{\alpha} + O(1) \lambda_m P_m^{\alpha} = O(1).$$

by virtue of (1.7), (4.1) and (4.2). Again, by using the condition (3.3), as in $T_{n,1}^{\alpha}$, we have that

$$\begin{split} \sum_{n=2}^{m+1} & \left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\beta(\delta k + k - 1)} \left|T_{n,2}^{\alpha}\right|^{k} \leq \\ & \leq \sum_{n=2}^{m+1} & \left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\beta(\delta k + k - 1) - k} \frac{1}{(P_{n-1}^{\alpha})^{k}} \left|\sum_{v=1}^{n-1} & P_{v}^{\alpha} \Delta \lambda_{v} s_{v}\right|^{k} \\ & = O(1) \sum_{n=2}^{m+1} & \left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\beta(\delta k + k - 1) - k} \frac{1}{(P_{n-1}^{\alpha})^{k}} \left\{\sum_{v=1}^{n-1} & p_{v}^{\alpha} \lambda_{v} |s_{v}|\right\}^{k} \\ & = O(1). \ \, \text{as} \quad m \to \infty; \ \, \text{as} \quad \text{in} \quad T_{n,1}^{\alpha} \end{split}$$

Finally, as in $T_{n,1}^{\alpha}$, we have that

$$\sum_{n=1}^{m+1} \left(\frac{P_n^{\alpha}}{p_n^{\alpha}}\right)^{\beta(8k+k-1)} \left|T_{n,3}^{\alpha}\right|^k = \sum_{n=1}^{m} \left(\frac{P_n^{\alpha}}{p_n^{\alpha}}\right)^{\beta(8k+k-1)} \left|\frac{p_n^{\alpha} s_n \lambda_n}{P_n^{\alpha}}\right|^k$$

$$= O(1) \sum_{n=1}^{m} \left(\frac{P_n^{\alpha}}{p_n^{\alpha}}\right)^{\beta(\delta k+k-1)-k} |s_n|^k (\lambda_n)^k$$

$$\leq O(1) \sum_{n=1}^{m} \left(\frac{P_n^{\alpha}}{p_n^{\alpha}}\right)^{\beta(\delta k+k)-k} p_n^{\alpha} |s_n|^k (\lambda_n)$$

= O(1). as $m \to \infty$; as in $T_{n,1}^{\alpha}$

Therefore, we get that

$$\sum_{n=1}^{\infty} \left(\frac{P_n^{\alpha}}{p_n^{\alpha}}\right)^{\beta(\delta k+k-1)} \left|T_{n,r}^{\alpha}\right|^k = O(1), \text{ as } m \to \infty, \text{ for } r = 1,2,3,$$

This completes the proof of the theorem.

REFERENCES

[1] BOR, H. : $|\underline{N}, p_n|_k$ summability factors of infinite series; Tamkang J. Math, Vol. 16, (1985), 13-20.

[2] BOR, H. : Commentationes Mathematicae, XXVII, (1989), 171-174.

[3] BOR, H. : Pan-Amer Math J. 2, (1992), 33-38.

[4] BOR, H. : Demonstratio Math., XXV, (1992), 187-192.

[5] BOR, H. : On the local property of $|N^-, p_n; \delta|_k$ summability of factored Fourier series; J. Math. Anal Appl. Vol. 179, (1993), 644-649.

[6] CHEN, M.: Math. Res. Centre nat. Taiwan Univ. (1967), 114-120.

[7] SEYHAN, H.: Pan-American Math. J., Vol. 9(4), (1999), 23-27.

[8] SINGH, N. and SHARMA, N.: On $(\underline{N}, p_n^{\alpha})$ summability factors theorem of infinite series; Bull-Call. Math. Soc. 92(1), (2000), 25-38.

[9] ZYGMUND, A.: Trigonometric series, Cambridge University Press, (1979).