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Abstract : In this paper we have proved a theorem for  |𝑁, 𝑝𝑛
𝛼 , 𝛽, 𝛿|𝑘  summability. 

However our theorem is as follows 

THEOREM: 

Let {𝑝𝑛} be a positive non-increasing sequence such that 𝑝𝑛
𝛼 → ∞, and  

 

∞

𝑛=𝑣+1

 
𝑝𝑛
𝛼

𝑃𝑛
𝛼 

𝛽 𝛿𝑘+𝑘−1 −𝑘 1

𝑝𝑛−1
𝛼 = 𝑂   

𝑃𝑣
𝛼

𝑝𝑣
𝛼 

𝛽 𝛿𝑘+𝑘 −𝑘 1

𝑃𝑣
𝛼  . 

If ∑𝑎𝑛  is  𝑁, 𝑝𝑛 ; 𝛿 
𝑘

, bounded and  𝜆 𝑛  is a sequence such of that non-negative, 

non-increasing, 

Suchthat      𝑝∑𝛼
𝑛 𝜆𝑛 < ∞ 

and  

𝑃𝑛
𝛼𝛥𝜆𝑛 = 𝑂 𝑝𝑛

𝛼𝜆𝑛 , 

then the series ∑𝑎𝑛𝜆𝑛  is summable  𝑁, 𝑝𝑛
𝛼 , 𝛽, 𝛿 

𝑘
, 𝑘 ≥ 1.  

1. DEFINITIONS AND NOTATIONS 

SINGH and SHARMA [8]-Let na  be a given infinite series with 𝑠𝑛  for its n-th 

partial sums. Define 

http://www.ijesm.co.in/
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𝑝𝑛
𝛼 =  

𝑛

𝑣=0

𝑎𝑛−𝑣
𝛼−1𝑝𝑣 

(1.1) 

where  

𝐴𝑛
𝛼 =  𝑛 + 𝛼 𝑛  =

 𝛼 + 1  𝛼 + 2  𝛼 + 3 … (𝛼 + 𝑛)

𝑛
, 𝛼 > −1  

and {𝑝𝑛} a sequence of real numbers such that 𝑝0 > 0, 𝑝𝑛 ≥ 0, 𝑛 = 1,2,3, … 

𝑃𝑛
𝛼 =  

𝑛

𝑣=0

𝑝𝑣
𝛼 . 

Let {𝑡𝑛
𝛼} be the sequence of (𝑁, 𝑝𝑛

𝛼) mean of the sequence {𝑠𝑛}, 

𝑡𝑛
𝛼 =

1

𝑃𝑛
𝛼  

𝑛

𝑣=0

 𝑝𝑣
𝛼𝑠𝑣 , 𝑝𝑛

𝛼 ≠ 0 
(1.2) 

The series ∑𝑎𝑛  is said to be summable  𝑁‾, 𝑝𝑛
𝛼  𝑘 , 1 ≤ 𝑘, if 

BOR [1] 

 

∞

𝑛=1

   
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝑘−1

 𝛥𝑡𝑛−1
𝛼  𝑘 < ∞, 

(1.3) 

and it is said to be summable  𝑁‾, 𝑝𝑛
𝛼 ; 𝛿 𝑘 , 𝑘 ≥ 1 and 𝛿 ≥ 0, if BOR [5] 

 

∞

𝑛=1

   
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛿𝑘+𝑘−1

 𝛥𝑡𝑛−1
𝛼  𝑘 < ∞, 

(1.4) 

where 

𝛥 𝑡𝑛−1
𝛼 =

𝑝𝑛
𝛼

𝑃𝑛
𝛼𝑃𝑛−1

𝛼  

𝑛

𝑣=1

 𝑃𝑣
𝛼𝑎𝑣 , 𝑛 ≥ 1 

(1.5) 

http://www.ijmra.us/
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In the special case when 𝛿 = 0 and 𝛼 = 1,  𝑁‾, 𝑝𝑛
𝛼 ; 𝛿 𝑘  summability is that same as 

 𝑁‾, 𝑝𝑛  𝑘  summability. 

Moreover, the series ∑𝑎𝑛  is said to be summable  𝑁‾, 𝑝𝑛 , 𝛽; 𝛿 𝑘 , 𝑘 ≥ 1, 𝛿 ≥ 0 and 

𝛽 = real number, if 

 

∞

𝑛=1

   
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽(𝛿𝑘+𝑘−1)

 𝛥𝑡𝑛−1
𝛼  𝑘 < ∞ 

However for 𝑝𝑛 = 1, for all 𝑛, the above definition reduces to [𝐶, 1, 𝛽; 𝛿]𝑘 . 

The series ∑𝑎𝑛  is said to be  𝑁‾, 𝑝𝑛 𝑘 , 𝑘 ≥ 1, if BOR [1] 

 

𝑛

𝑣=1

 𝑝𝑣 𝑠𝑣 
𝑘 = 𝑂 𝑃𝑛 , 𝑎 𝑠  𝑛 → ∞ 

(1.6) 

and it is said to be  𝑁, 𝑝𝑛 ; 𝛿 
𝑘
 bounded, 𝑘 ≥ 1, if BOR [3] 

 

𝑛

𝑣=1

   
𝑃𝑣
𝑝𝑣
 
𝛿𝑘

𝑝𝑣 𝑠𝑣 
𝑘 = 𝑂 𝑃𝑛 ,  𝑎𝑠  𝑛 → ∞ 

(1.7) 

If we take 𝛿 = 0, then  𝑁‾, 𝑝𝑛 ; 𝛿 𝑘  boundedness is the same as  𝑁‾, 𝑝𝑛  𝑘  

boundedness. 

Now, we shall define  𝑁‾, 𝑝𝑛
𝛼 , 𝛽; 𝛿 𝑘  as follows; 

The series ∑𝑎𝑛  is said to be  𝑁‾, 𝑝𝑛
𝛼 , 𝛽; 𝛿 𝑘 ; (𝑘 ≥ 1, 𝛿 ≥ 0 and 𝛽  is real number) if 

 

𝑛

𝑣=1

   
𝑝𝑟
𝑃𝑟
 
𝛽(𝛿𝑘+𝑘)−𝑘

 𝑝𝑣
𝛼  𝑠𝑣 

𝑘 = 𝑂 𝑃𝑛
𝛼 ,  𝑎𝑠  𝑛 → ∞ 

(1.8) 

A sequence  𝜆 𝑛  is said to be convex (ZYGMUND [9]), if 𝛥 2𝜆𝑛 ≥ 0 for every 

positive integer 𝑛, where 𝛥 2𝜆𝑛 = 𝛥𝜆𝑛 − 𝛥𝜆𝑛+1 and 𝛥𝜆 𝑛 = 𝜆𝑛 − 𝜆𝑛+1 . 

http://www.ijmra.us/
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2. INTRODUCTION : 

BOR [4] has proved the following theorem for  𝑁‾, 𝑝𝑛  𝑘  

summability. 

THEOREM A : 

Let  𝑝𝑛  be a positive non-increasing sequence such that 𝑃𝑛 → ∞, as 𝑛 → ∞ and 

1

𝑝𝑛
= 𝑂(𝑛) 

(2.1) 

If ∑𝑎𝑛  is  𝑁‾, 𝑝𝑛 𝑘  bounded and  𝜆 𝑛  is a convex sequence such that ∑𝑝𝑛𝜆𝑛  is 

convergent, then the series ∑𝑎𝑛𝜆𝑛  is summable  𝑁, 𝑝𝑛  𝑘 , 𝑘 ≥ 1. 

If we take 𝑘 = 1 in this theorem, then we get a result of CHEN [6]. 

Later on Theorem A of BOR [4] was proved by SEYHAN [7] under the weaker 

condition. However his theorem is as follows. 

THEOREM B : 

Let  𝑝𝑛  be a positive non-increasing sequence such that 𝑃𝑛 → ∞, as 𝑛 → ∞. If ∑𝑎𝑛  

is  𝑁‾, 𝑝𝑛 𝑘  bounded and  𝜆 𝑛  is a sequence of non-negative, non-increasing, and ∑𝑝𝑛𝜆𝑛  

is convergent, 𝑃𝑛𝛥𝜆𝑛 = 𝑂 𝑝𝑛𝜆𝑛 , then the series ∑𝑎𝑛𝜆𝑛  is summable  𝑁, 𝑝𝑛  𝑘 , 𝑘 ≥ 1. 

3 We shall prove the above theorem for  𝑁, 𝑝𝑛
𝛼 , 𝛽; 𝛿 

𝑘
 summability. 

THEOREM : 

Let  𝑝𝑛  be a positive non-increasing sequence such that 𝑃𝑛
𝛼 → ∞, as 𝑛 → ∞, and 

 

∞

𝑛=𝑣+1

  
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽(8𝑘+𝑘−1)−𝑘 1

𝑃𝑛−1
𝛼 = 𝑂   

𝑃𝑣
𝛼

𝑝𝑣
𝛼 

𝛽(8𝑘+𝑘)−𝑘 1

𝑃𝑣
𝛼 , 

(3.1) 

If ∑𝑎𝑛  is  𝑁‾, 𝑝𝑛 ; 𝛿 𝑘 , bounded and  𝜆 𝑛  is a sequence of 

non-negative, non-increasing, 

http://www.ijmra.us/
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  𝑝𝑛
𝛼𝜆𝑛 < ∞ 

(3.2) 

 

and 

𝑃𝑛
𝛼𝛥𝜆𝑛 = 𝑂 𝑝𝑛

𝛼𝜆𝑛  (3.3) 

then the series ∑𝑎𝑛𝜆𝑛  is summable  𝑁‾, 𝑝𝑛
𝛼 , 𝛽; 𝛿 𝑘 , 𝑘 ≥ 1. 

4. We need the following lemma for the proof of our theorem. 

Lemma : 

If  𝜆 𝑛  is a sequence such that it is non-negative, non-increasing and ∑𝑝𝑛
𝛼𝜆𝑛  is 

convergent, then 

  𝑝𝑛
𝛼𝜆𝑛 = 𝑂(1) 𝑎𝑠  𝑛 → ∞ 

(4.1) 

  𝑝𝑛
𝛼𝛥𝜆𝑛 < ∞ 𝑎𝑠  𝑛 → ∞ 

(4.2) 

The proof of above lemma follows on the lines of BOR [2]. 

5. PROOF OF THE THEOREM : 

Let  𝑇𝑛
𝛼  denotes the  𝑁‾, 𝑝𝑛

𝛼  mean of the series ∑𝑎𝑛𝜆𝑛 . 

Then, by definition, we have 

𝑇𝑛
𝛼 =

1

𝑃𝑛
𝛼  

𝑛

𝑣=0

 𝑝𝑣
𝛼  

𝑣

𝑟=0

 𝑎𝑟𝜆𝑟 =
1

𝑃𝑛
𝛼  

𝑛

𝑣=0

   𝑃𝑛
𝛼 − 𝑃𝑣−1

𝛼  𝑎𝑣𝜆𝑣 

then, we have 

𝑇𝑛
𝛼 − 𝑇𝑛−1

𝛼 =
𝑝𝑛
𝛼

𝑃𝑛
𝛼𝑃𝑛−1

𝛼  

𝑛

𝑣=1

 𝑝𝑣−1
𝛼 𝑎𝑣𝜆𝑣; 𝑛 ≥ 1,  𝑃−1

𝛼 = 0  

http://www.ijmra.us/


 ISSN: 2320-0294 Impact Factor: 6.765  

47 International Journal of Engineering, Science and Mathematics 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

By Abel's transformation we have 

𝑇𝑛
𝛼 − 𝑇𝑛−1

𝛼 =
−𝑝𝑛

𝛼

𝑃𝑛
𝛼𝑃𝑛−1

𝛼  

𝑛−1

𝑣=1

  𝑝𝑣
𝛼𝑠𝑣𝜆𝑣 +

𝑝𝑛
𝛼

𝑃𝑛
𝛼𝑃𝑛−1

𝛼  

𝑛−1

𝑣=1

  𝑃𝑣
𝛼𝑠𝑣𝛥𝜆𝑣 +

𝑝𝑛
𝛼𝑠𝑛𝜆𝑛
𝑃𝑛
𝛼

= 𝑇𝑛,1
𝛼 + 𝑇𝑛,2

𝛼 + 𝑇𝑛,3
𝛼 ,  𝑠𝑎𝑦   

To prove the theorem, by Minkowski's inequality, it is sufficient to show that 

 

∞

𝑛=1

   
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽(8𝑘+𝑘−1)

 𝑇𝑛,𝑟
𝛼  

𝑘
< ∞,  𝑓𝑜𝑟  𝑟 = 1,2,3 

(5.1) 

Since 𝜆 𝑛 = 𝑂  
1

𝑃𝑛
𝛼 = 𝑂(1), by (4.1) and applying Hölder's inequality with indices 

𝑘 and 𝑘 ′, where 
1

𝑘
+

1

𝑘 ′
= 1 and by using (3.1), we get that 

 

𝑚+1

𝑛=2

  
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽(𝛿𝑘+𝑘−1)

 𝑇𝑛,1
𝛼  

𝑘
≤ 

  ≤  

𝑚+1

𝑛=2

    
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽(𝛿𝑘+𝑘−1)

 
𝑝𝑛−1
𝛼

𝑃𝑛
𝛼𝑃𝑛−1

𝛼  

𝑛−1

𝑣=1

  𝑝𝑣
𝛼𝑠𝑣𝜆𝑣 

𝑘

   

≤  

𝑚+1

𝑛=2

    
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽(𝛿𝑘+𝑘−1)−𝑘 1

 𝑃𝑛−1
𝛼  𝑘

  

𝑛−1

𝑣=1

  𝑝𝑣
𝛼𝜆𝑣 𝑠𝑣  

𝑘

  

  ≤  

𝑚+1

𝑛=2

   
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽(𝛿𝑘+𝑘−1)−𝑘 1

𝑃𝑛−1
𝛼  

𝑛−1

𝑣=1

  𝑝𝑣
𝛼 𝜆𝑣 

𝑘  𝑠𝑣 
𝑘  

1

𝑃𝑛−1
𝛼  

𝑛−1

𝑣=1

  𝑝𝑣
𝛼 

𝑘−1

   

= 𝑂(1)  

𝑚

𝑣=1

  𝑝𝑣
𝛼 𝜆𝑣 

𝑘  𝑠𝑣 
𝑘  

𝑚+1

𝑛=𝑣+1

    
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽((𝛿𝑘+𝑘−1)−𝑘 1

𝑃𝑛−1
𝛼   

http://www.ijmra.us/
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  = 𝑂(1) 

𝑚

𝑣=1

    
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽(𝛿𝑘+𝑘)−𝑘−1

 𝑠𝑣 
𝑘 𝜆𝑣 

𝑘    

= 𝑂(1) 

𝑚

𝑣=1

  𝑝𝑛
𝛼  𝑠𝑣 

𝑘 𝜆𝑣  𝜆𝑣 
𝑘−1  

𝑃𝑣
𝛼

𝑝𝑣
𝛼 

𝛽(𝛿𝑘+𝑘)−𝑘

   

= 𝑂(1) 

𝑚

𝑣=1

  𝑝𝑛
𝛼  𝑠𝑣 

𝑘 𝜆𝑣  
𝑃𝑣
𝛼

𝑝𝑣
𝛼 

𝛽(𝛿𝑘+𝑘)−𝑘

   

= 𝑂(1)  

𝑚−1

𝑣=1

  𝛥𝜆𝑣  

𝑣

𝑧=1

    
𝑃𝑧
𝛼

𝑝𝑧
𝛼
 

𝛽(𝛿𝑘+𝑘)−𝑘

𝑝𝑧
𝛼  𝑠𝑧 

𝑘

+   +𝑂(1)𝜆𝑚  

𝑚

𝑣=1

   
𝑃𝑣
𝛼

𝑝𝑣
𝛼 

𝛽(𝛿𝑘+𝑘)−𝑘

𝑝𝑣 𝑠𝑣 
𝑘    

= 𝑂(1)  

𝑚−1

𝑣=1

  𝛥𝜆𝑣𝑃𝑣
𝛼 + 𝑂(1)𝜆𝑚𝑃𝑚

𝛼    = 𝑂(1).  

by virtue of (1.7), (4.1) and (4.2). Again, by using the condition (3.3), as in 𝑇𝑛,1
𝛼 , we have 

that 

   

𝑚+1

𝑛=2

    
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽(𝛿𝑘+𝑘−1)

 𝑇𝑛,2
𝛼  

𝑘
≤   

≤  

𝑚+1

𝑛=2

    
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽(𝛿𝑘+𝑘−1)−𝑘 1

 𝑃𝑛−1
𝛼  𝑘

  

𝑛−1

𝑣=1

  𝑃𝑣
𝛼𝛥𝜆𝑣𝑠𝑣 

𝑘

   

= 𝑂(1)  

𝑚+1

𝑛=2

    
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽(𝛿𝑘+𝑘−1)−𝑘 1

 𝑃𝑛−1
𝛼  𝑘

  

𝑛−1

𝑣=1

  𝑝𝑣
𝛼𝜆𝑣 𝑠𝑣  

𝑘

   

= 𝑂(1).  𝑎𝑠  𝑚 → ∞;  𝑎𝑠  𝑖𝑛  𝑇𝑛,1
𝛼   

Finally, as in 𝑇𝑛,1
𝛼 , we have that 

http://www.ijmra.us/
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𝑚+1

𝑛=1

   
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽(8𝑘+𝑘−1)

 𝑇𝑛,3
𝛼  

𝑘
   =  

𝑚

𝑛=1

    
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽(8𝑘+𝑘−1)

 
𝑝𝑛
𝛼𝑠𝑛𝜆𝑛
𝑃𝑛
𝛼  

𝑘

   

= 𝑂(1)  

𝑚

𝑛=1

    
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽(𝛿𝑘+𝑘−1)−𝑘

 𝑠𝑛  
𝑘 𝜆𝑛 

𝑘    

≤ 𝑂(1)  

𝑚

𝑛=1

   
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽(𝛿𝑘+𝑘)−𝑘

𝑝𝑛
𝛼  𝑠𝑛  

𝑘 𝜆𝑛   

          = 𝑂(1).   as 𝑚 → ∞; as in 𝑇𝑛,1
𝛼  

Therefore, we get that 

 

∞

𝑛=1

   
𝑃𝑛
𝛼

𝑝𝑛
𝛼 

𝛽(𝛿𝑘+𝑘−1)

 𝑇𝑛,𝑟
𝛼  

𝑘
= 𝑂(1),  𝑎𝑠  𝑚 → ∞,  𝑓𝑜𝑟  𝑟 = 1,2,3,   

This completes the proof of the theorem. 
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