International Journal of Engineering, Science and Mathematics

Vol. 9 Issue 1, Jan 2020,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Existence Theory For Quadratic Functional Differential Equation on Unbounded Intervals

P. K.GAOTURE

Department of Physics, Ismail Yusuf College, Jogeshwari ,Mumbai. E-mail: preetikirangaoture@gmail.com

D. S. PALIMKAR

Department of Mathematics, Vasantrao Naik College, Nanded E-mail: dspalimkar@rediffmail.com

	ABSTRACT
	In this paper, we investigate the first order quadratic
	functional differential equation on unbounded intervals.
	We prove the existence and attractivity results of the
KEYWORDS:	solution using hybrid fixed point theory.
Quadratic functional	Copyright © 2020 International Journals of Multidisciplinary Research Academy. All rights reserved.
differential equation,	
Hybrid fixed point	
theorem, attractivity.	
,	

1. INTRODUCTION

Consider the following quadratic functional differential equation on unbounded intervals,

$$\left[\frac{p(t)u(t)}{f(t,u(t))}\right]' = g(t,u(t),u_t) + h(t,u(t),u_t) + k(t,u(t),u_t), \ a.e.t \in R_+$$
 (1.1)

Where $p \in CRB(R_+)$, $f: R_+ \times R \rightarrow R \setminus \{0\}$, $g: R_+ \times R \times C \rightarrow R$ and $h: R_+ \times R \times C \rightarrow R$.

The problem(1.1)have been studied on closed and bounded intervals by Hale [13], Ntouyas [16] Dhage [11]. The above problem (1.1) is not discussed on unbounded

intervals .Here, we have discussed on unbounded intervals and prove the existence, attractivity results applying hybrid fixed point theory.

2. Auxiliary Results

Let $I_0=[-\delta,0]$ be a closed ,bounded interval in real line R for some real number $\delta>0$ and let $J=I_0\cup R_+$.

We have listed the following result for proving the main existence result.

Theorem2.1 (Dhage[10]). Let S be a non-empty, closed convex and bounded subset of the Banach algebra U and Let $A: U \to U$ and $B: S \to U$ be two operators such that

- (i) A is D-Lipschitz with D-function ψ ,
- (ii) B is completely continuous,
- (iii) $u = Au Bv \Rightarrow u \in S \text{ for all } v \in S, \text{ and }$
- (iv) $M \psi(t) < r, \text{ where } M = ||B(S)|| = \sup\{||Bu|| : u \in S\}$

Then the operator equation Au Bu = u has a solution in S.

3. Existence Results

We have needd some definitions.

$$BC(I_0 \cup R_+, R)$$

Main Result

Consider the following set of hypotheses.

$$(A_1)$$
. There is a continuous function h : $R_+ \to R_+$ such that $|g(t,u,v)| \le h(t)$ a.e. $t \in R_+$

for all $u \in R$ and $v \in C$. Also, let $\lim_{t \to \infty} |p(t)| \int_0^t h(s) ds = 0$

 $(A_2)\phi(0) \ge 0$

 (A_3) . The function $t \to f(t,0,0)$ is bounded on R_+ with $F_0 = \sup\{|f(t,0,0)| : t \in R_+\}$.

 (A_4) .The function $f: R_+ \times R \to R$ is continuous and there exists a function

 $\ell \in BC(R_{\perp}, R)$ and a real number K > 0 such that

$$|f(t,u)-f(t,v)| \ell(t) \frac{|u-v|}{K+|u-v|}$$
 for all $t \in R_+$ and $u,v \in R$ also

suppose $\sup_{t>0} \ell(t) = L$.

$$(A_5). \lim_{t\to\infty} \left[|f(t,u)| - f(t,v) \right] = 0 \text{ for all } u \in R.$$

$$(A_6)$$
. $f(0,\phi(0)) = 1$

$$(A7_7)$$
. Suppose $u \to \frac{u}{f(0,u)}$ is injective.

Theorem 3.1. Suppose that (A_1) , (A_3) , (A_4) , (A_6) and (A_7)) holds. Further, assume that $L \max\{\|\phi\|, \|\phi(0)\| \|\overline{a}\| + W\} \le K.$ (3.1)

Then problem (1.1) admits a solution and solution is uniformly globally attractive.

Proof. Now, using hypotheses (A_6) and (A_7) it can be shown that the problem (1.1) is equivalent to the functional integral equation

$$u(t) = \begin{cases} [f(t, u(t))] \Big(\phi(0)\overline{a}(t) + \overline{a}(t) \int_0^t [g(s, u(s), u_s) + h(s, u(s), u_s) + k(s, u(s), u_s)] ds \Big), & \text{if } t \in \mathbb{R}_+ \\ \phi(t), & \text{if } t \in I_0 \end{cases}$$
(3.2)

Set $U=BC(I_0\cup R_+,R)$ and define a closed ball $\overline{B}_r(0)$ in U centered at origin of radius r given by

$$r = \max\{1, L + F_0\} \max\{\|\phi\|, |\phi(0)| \|\overline{a}\| + W\}$$

Define the operators A, B on X, $\overline{B}_r(0)$ respectively by

$$Au(t) = \begin{cases} f(t, u(t)), & \text{if } t \in R_{+} \\ 1, & \text{if } t \in I_{0} \end{cases}$$
 (3.3)

$$\text{And} \quad Bu(t) = \begin{cases} \phi(0) \overset{-}{p}(t) + \overset{-}{p} \int_0^t \left[g(s, u(s), u_s) + h(s, u(s), u_s) + k(s, u(s), u_s) \right] ds, & \text{if } t \in R_+ \\ \phi(t), & \text{if } t \in I_0 \, . \end{cases}$$

Then the equation (3.2) is transformed into the operator equation as

$$Au(t)Bu(t) = u(t), \ t \in I_0 \cup R_+.$$
 (3.4)

We have to Show that A and B satisfy all the conditions of Theorem 2.1 on $BC(I_0 \cup R_+, R) \text{ First we show that the operators A and B define the mappings}$ $A: U \to U \text{ and } B: \overline{B}_r(0) \to U. \text{ be arbitrary. Obviously, Au is a continuous function on } I_0 \cup R_+. \text{ We show that Au is bounded on } I_0 \cup R_+. \text{ Thus, if } t \in R_+, \text{ then we obtain:}$

$$|Au(t)| = |f(t, u(t))| \le |f(t, u(t)) - f(t, 0)| + |f(t, 0)|$$

$$\le \ell(t) \frac{|u(t)|}{K + |u(t)|} + F_0 \le L + F_0$$

Similarly, $|Au(t)| \le 1$ for all $t \in I_0$. Therefore, taking the supremum over t,

$$|Au| \le \max\{1, L+F_0\} = N ||Au|| \le \max\{1, L+F_0\} = N$$

Thus Au is continuous and bounded on $I_0 \cup R_+$. As a result $Au \in U$. It can be shown that $Bu \in U$ and in particular, $A: U \to U$ and $B: \overline{B}_r(0) \to U$. We show that A is a Lipschitz on U. Let $u, v \in U$ be arbitrary. Then, by hypothesis (A_3) ,

$$||Au - Av|| = \sup_{t \in I_0 \cup \square_+} |Au(t) - Av(t)|$$

$$\leq \max \left\{ \sup_{t \in I_0} |Au(t) - Av(t)|, \sup_{t \in \square_+} |Au(t) - Av(t)| \right\}$$

$$\leq \max \left\{ 0, \sup_{t \in \square_+} \ell(t) \frac{|u(t) - v(t)|}{K + |u(t) - v(t)|} \right\}$$

$$\leq \frac{L ||u - v||}{K + ||u - v||}$$

for all u, $v \in U$. This shows that A is a D-Lipschitz on U with D-function $\psi(r) = \frac{Lr}{K+r}$ next, it can be shown that B is a compact and continuous operator on U and in particular

on $\overline{B}_r(0)$ Next , we estimate the value of the constant M.By definition of M, as

$$|B(\overline{B}_{r}(0))|| = \sup \left\{ ||Bu|| : u \in \overline{B}_{r}(0) \right\}$$

$$= \sup \left\{ \sup_{t \in I_{0} \cup I_{+}} ||Bu(t)|| : u \in \overline{B}_{r}(0) \right\}$$

$$\leq \sup \left\{ \max \left\{ \sup_{t \in I_{0}} ||Bu(t)||, \sup_{t \in I_{+}} ||Bu(t)|| \right\} : u \in \overline{B}_{r}(0) \right\}$$

$$\leq \sup_{u \in \overline{B}_{r}(0)} \left\{ \max \left\{ ||\phi||, ||\phi(0)|| \overline{u}(t)| \right\}$$

$$+ \sup_{t \in R_{+}} ||\overline{p}(t)|| \int_{0}^{t} ||g(s, u(s), u_{s})| + h(s, u(s), u_{s}) + k(s, u(s), u_{s})||ds \rangle \right\}$$

 $\leq \max \left\{ \|\phi\|, |\phi(0)| \|\overline{p}\| + W \right\}$

Thus,

$$||Bu|| \le \max\{||\phi||, |\phi(0)|||\overline{p}| + W\} = M$$

for all $u \in \bar{B}_r(0)$. Next, let $u, v \in U$ be arbitrary. Then,

$$|u(t)| \le |Au(t)| |Bv(t)|$$

$$\le ||Au|| ||Bv||$$

$$\le ||A(U)|| ||B(\overline{B}_r(0))||$$

$$\le \max\{1, L + F_0\} M$$

$$\le \max\{1, L + F_0\} \max\{||\phi||, |\phi(0)|| ||\overline{p}|| + W\}$$

$$= r$$

For all $t \in I_0 \cup R_+$. Therefore, we have:

$$||u|| \le \max\{1, L + F_0\} \max\{||\phi||, |\phi(0)||| p ||+W\} = r$$

This shows that $u \in \overline{B}_{r}(0)$ and hypothesis (iii) of Theorem 2.1 is satisfied. Again,

$$M\phi(r) \le \frac{L \max\{\|\phi\| |\phi(0)| \|\overline{p}\| + W\}r}{K + r} < r$$

For r>0, because $L \max \left\{ \|\phi\| \, |\, \phi(0)| \, \|\, \overline{p}\, \|\, +W \right\} \leq K.$

Therefore, hypothesis (iv) of Theorem 2.1 is satisfied. Now we apply Theorem 2.1 to the operator equation $Au\ Bu=u$ to yield that the problem (1.1) has a solution on $I_0\cup R_+$ Moreover, the solutions of the problem(1.1) are in $\overline{B}_r(0)$ Hence, solutions are global in nature.

Finally, let $u,v\in \overline{B}_r(0)$ be any two solutions of the problem(1.1) on $I_0\cup R_+$. Then

$$|u(t)-v(t)| \leq |[f(t,u(t))] \Big(\phi(0)\overline{p}(t) + \overline{p}(t) \int_{0}^{t} [g(s,u(s),u_{s}) + h(s,u(s),u_{s})] + k(s,u(s),u_{s}) ds \Big)$$

$$-[f(t,v(t))] \Big(\phi(0)\overline{p}(t) + \overline{p}(t) \int_{0}^{t} [g(s,v(s),v_{s}) + h(s,v(s),v_{s})] + k(s,u(s),v_{s}) ds \Big)$$

$$\leq |f(t,u(t)) - f(t,v(t))| \Big(\phi(0)\overline{p}(t) + \overline{p}(t) \int_{0}^{t} [g(s,u(s),u_{s}) + h(s,u(s),u_{s})] + k(s,u(s),u_{s}) ds \Big)$$

$$+|f(t,v(t)) \Big(\overline{p}(t) \int_{0}^{t} \left\{ [g(s,u(s),u_{s}) - g(s,u(s),u_{s})] - [k(s,u(s),u_{s}) - k(s,v(s),v_{s})] \right\} ds \Big)$$

$$\leq |f(t,u(t)) - f(t,v(t))| \Big(|\phi(0)|| \overline{p}(t)| + |\overline{p}(t)| \int_{0}^{t} h(s) ds \Big)$$

$$+2[|f(t,u(t)) - f(t,0)| + |f(t,0)|] r(t)$$

$$\leq C(t) \frac{|u(t) - v(t)|}{K + |u(t) - v(t)|} \Big(|\phi(0)|| \overline{p}|| + R \Big)$$

$$(3.5)$$

$$+2\left[\frac{C(t)|v(t)|}{K+|v(t)|}+F_{0}\right]r(t)$$

$$\leq \frac{L(|\phi(0)|||p||+R)|u(t)-v(t)|}{K+|u(t)-vy(t)|}+2(L+F_{0})r(t)$$

Taking the limit superior as $t \to \infty$ in the above, we get

$$\lim_{t\to\infty}|u(t)-v(t)|=0$$

Hence, there is a real number T > 0 such that $|u(t)-v(t)| < \in for \ all \ t \ge T$. Obviously, the solutions of problem(1.1) are uniformly globally attractive on $I_0 \cup R_+$. This completes the proof.

REFERENCES

- [1] J. Banas, B. Rzepka, An application of a measure of non-compactness in the study of asymptotic stability, Appl. Math. Letter 16(2003),1-6.
- [2] J. Banas, B.C. Dhage, Global asymptotic stability of solutions of a functional integral equeations, Nonlinear Analysis 69 (2008), 1945-1952.
- [3] T.A. Burton, A fixed point theorem of Krasnoselskii, Appl.Math. Lett. 11(1998),85-88.
- [4] T.A. Burton, B. Zhagng, Fixed points and stability of an integral equations: nonuniqueness, Appl. Math. Letters 17(2004), 839-846.
- [5] T.A. Burton and T. Furumochi, A note on stability by Schauder's theorem, Funkcialaji Ekvacioj 445(2001), 73-82.

- [6] K. Deimling, Nonlinear Functional Analysis, Springer Verlag, Berlin, 1985.
- [7] B.C. Dhage, A nonlinear alternative with applications to nonlinear perturbed differential equiations, Nonlinear Studies, 13(4) (2006), 343-354.
- [8] B.C. Dhage, Local asymptotic attractivity for nonlinear quadratic functional integral equation, Nonlinear Analysis 70 (5) (2009), 1912-1922.
- [9] B.C. Dhage, Global attractivity result for nonlinear functional integral equations via a Krasnoselskii type fixed point theorem, Nonlinear Analysis 70 (2009), 2485-2493
- [10] B.C. Dhage, A fixed point theorem in Banach algebras withapplications to functional integral equations, Kyungpook Math. J. 44(2004),145-155.
- [11] B.C. Dhage, S.N. Salunkhe, R.P. Agrawal and W. Zhang, A functional differential equations in Banach algebras, Math.Ineq. Appl.8 (1) (2005),89-99.
- [12] A.Granas and J. Dugundji, Fixed Point Theory, Springer Verlag, New York, 2003.
- [13] H.K. Hale, Theory of Functional Differential Equations, Springer Verlag, New York, 1977.
- [14] S.Heikkila and V. Lakshmikantham, Monotone Iterative Technique forNonlinear Discontinues Differential Equations, Marcel Dekker Inc., NewYork, 1994.
- [15] X. Hu, J Yan, The global attractivity and asymplotic stability of solution of a nonlinear integral equation, J. Math. Anal. Appl 321(2006), 147-156.