
International Journal of Engineering, Science & Mathematics 
 Vol. 12 Issue 01, January 2023,  

ISSN: 2320-0294 Impact Factor: 6.765 

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com          
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & 

Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A 

  

91 International journal of Engineering, Science and Mathematics 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

A STUDY ON LINEAR ALGEBRA AND IT'S SIGNIFICANCE 

 

Dr. Sudesh Rathee, Associate professor, 

G.C.W. Bahadurgarh, Distt. Jhajjar, Haryana 

 

Abstract 

With the use of matrices and vectors, linear algebra enables us to get a head start on 

comprehending fundamental linear systems. The study of vectors, vector spaces, linear 

mappings, and systems of linear equations are all topics that fall under the purview of 

linear algebra, which is a branch of mathematics. Because vector spaces are such an 

important topic in contemporary mathematics, linear algebra plays a significant role not 

just in abstract algebra but also in functional analysis. Additionally, a tangible 

representation of linear algebra may be found in analytic geometry, and operator theory 

generalises linear algebra further. Due to the fact that nonlinear models are frequently 

approximable by linear ones, it has a wide range of applications in both the natural 

sciences and the social sciences. Through the utilization of matrices and vectors, linear 

algebra enables us to start getting a grasp on straightforward linear systems. The study of 

vectors, vector spaces, linear maps, and linear equation structures are all topics that fall 

under the purview of the mathematical field known as linear algebra. Vector spaces are 

considered to be one of the most important topics in contemporary mathematics. Linear 

algebra is also utilised often in abstract algebra and functional analysis. Additionally, 

linear algebra possesses a concrete representation in analytic geometry; additionally, 

operator theory generalises linear algebra. It has a wide range of applications in the 

natural sciences as well as the social sciences due to the fact that nonlinear models are 

frequently approximable by linear ones. 
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INTRODUCTION 

The study of vectors in Cartesian 2-space and 3-space was the starting point for the 

development of linear algebra. In this context, a vector is a segment of a directed line that 

is distinguished by both its magnitude, which is denoted by its length, and its direction. 

The first example of a real vector space may be created by adding vectors to each other and 

multiplying them with scalars. Vectors can be used to represent physical phenomena such 

as forces, and they can also be multiplied with scalars. The scope of contemporary linear 

algebra has been broadened to include consideration of spaces with arbitrary or infinite 

size. The term "n-space" refers to a vector space that has n dimensions. The vast majority 

of the valuable discoveries obtained in 2- and 3-space may easily be extended to these 

higher dimensional spaces. Despite the fact that individuals have a difficult time seeing 

vectors in n-space, such vectors and n-tuples are beneficial when it comes to describing 
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data. It is feasible to effectively summarise and handle data within this framework due to 

the fact that vectors, in their capacity as n-tuples, are ordered lists consisting of n 

components. In the field of economics, for instance, one may construct and apply, for 

instance, 8-dimensional vectors or 8-tuples in order to represent the Gross National 

Product of eight different nations. Using a vector (v1, v2, v3, v4, v5, v6, v7, v8) in which 

each country's GNP is in its respective position, one can choose to display the Gross 

National Product (GNP) of eight countries for a specific year, where the order of the 

countries is specified, for example, (United States, United Kingdom, France, Germany, 

Spain, India, Japan, Australia), where the example order of the countries is (United States, 

The idea of a vector space, also known as a linear space, is one that is included in abstract 

algebra and has a natural place within this field of study. Theorems may be proven 

regarding this entirely abstract concept. The group of invertible linear maps or matrices 

and the ring of linear mappings of a vector space are two particularly illustrative instances 

of this phenomenon. Analysis also makes extensive use of linear algebra, particularly in 

the explanation of higher order derivatives in vector analysis, as well as in the investigation 

of tensor products and alternating maps. 

Linear Algebra is a standout amongst the most essential fundamental regions in 

Mathematics, having at least as awesome an effect as Calculus, and to be sure it gives a 

significant piece of the hardware that is required to summarise Calculus to vector-esteemed 

elements of numerous variables. Linear Algebra is a standout amongst the most essential 

fundamental regions in Mathematics. In contrast to numerous logarithmic frameworks 

considered in Mathematics or connected inside or outside of it, a significant portion of the 

issues concentrated on in linear algebra are manageable to precise and even algorithmic 

arrangements, and this makes them implementable on PCs. This elucidates why so much 

calculational utilisation of PCs incorporates this kind of polynomial math, and it also 

clarifies why it is so generally utilised. The concepts of linear algebra are used to the study 

of a variety of geometric topics, and the idea of a direct change is an arithmetical 

translation of the concept of geometric change. Finally, a significant number of 

contemporary one-of-a-kind variable-based mathematical constructions are built on linear 

algebra, and it frequently affords good instances of general. 

By utilising the two concepts that are included in the title, the subject of linear algebra-

based mathematics may be partially elucidated for the reader. You will have a better 

understanding of the term "linear" by the time you reach the conclusion of this course, and 

in all honesty, gaining this appreciation may be considered to be one of the most important 

goals of this course. You can, however, understand it to imply anything that is "straight" or 

"level" until further notice is given. For instance, on the xy-plane, you could be used to 

depicting straight lines (are there any other kinds?) as the arrangement of answers for a 

mathematical statement of the structure. But there are really different kinds of 

lines.y=mx+b, where the slant m and the y-capture b are constants that together depict the 

line. In the event that you have contemplated multivariate analytics, then you will have 

experienced planes. Living in three measurements, with directions portrayed by triples 

(x,y,z), they can be depicted as the arrangement of answers for mathematical statements of 
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the structure ax+by+cz=d, where a,b,c,d are elements that, when combined, bring the plane 

into focus. Planes, on the other hand, may be represented as level, whereas lines in three 

dimensions can be represented as linear. You will learn about lines in a course on 

multivariate analytics, where you will examine that lines are collections of foci shown by 

comparisons, such as, x=3t−4, y=−7t+2, z=9t, where t is a parameter that can tackle any 

worth. 

OBJECTIVE OF THE STUDY  

1. To study on Linear algebra and its significance. 

2. To study on linear equation is an algebraic equation. 

ELEMENTARY INTRODUCTION 

The study of vectors in cartesian 2-space and 3-space was the starting point for the 

development of linear algebra. In this context, the term "vector" refers to a directed line 

segment that is distinguished by its magnitude (also known as length or norm) as well as its 

direction. The zero vector is an anomaly; its magnitude is 0, and it does not point in any 

particular direction. Because vectors can be added to one another and multiplied by scalars, 

they can be used to represent physical entities such as forces. This creates the first example 

of a real vector space, which differentiates between "scalars," or in this case, real numbers, 

and "vectors." Vectors can be used to represent physical entities such as forces. 

The scope of contemporary linear algebra has been broadened to include consideration of 

spaces with arbitrary or infinite size. The term "n-space" refers to a vector space that has n 

dimensions. The vast majority of the valuable discoveries obtained in 2- and 3-space may 

easily be extended to these higher dimensional spaces. Despite the fact that individuals 

have a difficult time seeing vectors in n-space, such vectors and n-tuples are beneficial 

when it comes to describing data. Given that vectors, as n-tuples, are composed of n 

ordered components, data may be summarised and handled in an effective manner within 

the context of this framework. For instance, in the field of economics, one may construct 

and apply, say, eight-dimensional vectors or eight-tuples to represent the gross national 

product of eight different nations. One can decide to display the GNP of 8 countries for a 

particular year, where the countries' order is specified, for example, (United States, United 

Kingdom, Armenia, Germany, Brazil, India, Japan, Bangladesh), by using a vector (v1, v2, 

v3, v4, v5, v6, v7, v8) where each country's GNP is in its respective position. 

SOME USEFUL THEOREMS 

• A basis is present in every vector space. 

• The cardinality of any two bases of the same vector space is the same. In other 

words, the dimension of a vector space is well-defined. 

• It is possible to invert a matrix only if the determinant of the matrix is not zero. 

https://en.wikipedia.org/wiki/Algebraic_equation
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/United_States
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http://en.wikipedia.org/wiki/Armenia
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 If the linear map that the matrix represents is an isomorphism, then and only then is 

the matrix considered to be invertible. 

• An invertible square matrix must have either a left or a right inverse in order to 

satisfy the requirements of the invertibility condition (see invertible matrix for 

other equivalent statements). 

• A matrix is said to be positive semidefinite if, and only if, every single one of its 

eigen values is either larger than or equal to zero. A matrix is said to have positive 

definiteness if and only if every one of its eigenvalues is nonzero and bigger than 

zero. 

• A n by n matrix is said to be diagonalizable if and only if it possesses n linearly 

independent eigenvectors. This means that there must exist both an invertible 

matrix P and a diagonal matrix D in such a way that A = PDP-1. 

 According to the spectral theorem, in order for a matrix to be orthogonally 

diagonalizable, the matrix must first and foremost be symmetric. 

• Please refer to the page on invertible matrices for any more information about the 

invertibility of a matrix. 

LINEAR ALGEBRA 

A linear subspace, which is a typical topic of study in linear algebra, is represented in R3 

by a line that is thick blue and passes through the origin of the space. The study of vectors, 

vector spaces (sometimes referred to as linear spaces), linear mappings (often referred to as 

linear transformations), and systems of linear equations are all topics that are covered in 

linear algebra, which is a branch of mathematics. Because vector spaces are such an 

important topic in contemporary mathematics, linear algebra plays a significant role not 

just in abstract algebra but also in functional analysis. Additionally, a tangible 

representation of linear algebra may be found in analytic geometry, and operator theory 

generalises linear algebra further. Due to the fact that nonlinear models are frequently 

approximable by linear ones, it has a wide range of applications in both the natural 

sciences and the social sciences. 

LINEAR EQUATION 

An algebraic equation is said to be linear if each term in the equation is either a constant or 

the product of a constant and (the first power of) a single variable. Linear equations are the 

simplest type of algebraic equations. Equations that are linear might include anything from 

one to several variables. Equations of the linear form are commonplace in almost all 

branches of mathematics, but they are especially prevalent in applied mathematics. 

Although they appear quite naturally when modelling many phenomena, linear equations 

are particularly useful because many nonlinear equations can be reduced to linear 

equations by making the assumption that quantities of interest vary to only a small extent 
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from some "background" state. Although they appear quite naturally when modelling many 

phenomena, linear equations are particularly useful. Linear equations do not include 

exponents. In this piece, we take a look at the scenario of a single equation for which one 

must hunt for the genuine answers. The entirety of its material is applicable for solving 

problems with complicated solutions and, more generally, for solving linear equations with 

coefficients and solutions in any domain. 

MATRIX 

A matrix, sometimes written as matrices or matrices, is a rectangular array of integers that 

is used in mathematics. An example of a matrix may be seen to the right. Vectors are 

matrices that consist of only one column or row, but tensors are arrays of numbers that 

have a greater dimension, such as three dimensions. Matrices are capable of undergoing 

operations such as entry-wise addition and subtraction, as well as multiplication in 

accordance with a rule that corresponds to the composition of linear transformations. The 

normal identities are satisfied by these operations, with one exception: the multiplication of 

matrices is not commutative, hence the identity AB=BA may not always be true. Matrices 

may be used to represent linear transformations, which are higher-dimensional analogues 

of linear functions that take the form f(x) = cx, where c is a constant. This is one of the 

many applications for matrices. In a set of linear equations, matrices may also be used to 

keep track of the coefficients of the equations. For a square matrix, the behaviour of 

solutions to the accompanying system of linear equations is governed by the determinant 

and the inverse matrix (where it exists), and eigen values and eigenvectors offer insight 

into the geometry of the associated linear transformation. There are many different uses for 

matrices. They are utilised in a variety of subfields within the field of physics, including 

geometrical optics and matrix mechanics, for example. This latter result also led to a more 

in-depth examination of matrices that had an endless number of rows and columns. In 

graph theory, matrices are used to encode the distances between knot points in a network, 

such as cities that are connected by roads. In computer graphics, matrices are used to 

encode projections of three-dimensional space onto a two-dimensional screen. 

The concepts of traditional analytical mathematics, such as derivatives of functions and 

exponentials, are generalised to the context of matrices by the matrix calculus. In the 

process of solving ordinary differential equations, the latter is a requirement that frequently 

arises. Both serialism and dodecaphonism are 20th-century musical trends that employ a 

square mathematical matrix in order to establish the pattern of music intervals. Because of 

their broad application, a significant amount of work has been invested into the 

development of effective algorithms for calculating matrices, particularly when the 

matrices are of a significant size. In order to achieve this goal, a number of different matrix 

decomposition methods have been developed. These approaches describe matrices as the 

products of other matrices that have certain features, hence simplifying calculations on 

both a theoretical and a practical level. Sparse matrices, which are matrices that consist 

mainly of zeros and which might occur, for example, in the process of modelling 

mechanical tests using the finite element technique, frequently make it possible for more 



 ISSN: 2320-0294Impact Factor: 6.765  

 

96 International journal of  Engineerin, Science and Mathematicsg 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

particularly customised algorithms to do these jobs. As a result of the strong connection 

that exists between matrices and linear transformations, the former is an essential concept 

in linear algebra. There are many other kinds of entries that may be employed, such as 

elements in more general mathematical fields or even rings. 

Matrix Multiplication 

It is only possible to multiply two matrices together if both of the matrices satisfy certain 

constraints about their dimensions, which allows them to conform. Matrix multiplication is 

associative, meaning that A (BC) = (AB) C, but it is not commutative in general, so AB 

does not equal BA. If matrix A has dimensions of m by n, and matrix B has dimensions of 

n by p, then the product C = AB. If matrix A has the same number of columns as the 

number of rows in B, then the product C = AB. It is noteworthy to note, as a side point, 

that unlike in the case of scalars, the fact that AB = 0 does not entail that either A = 0 or 

that B = 0. This is in contrast to the situation with scalars. 

Williams, 2003 describes the revised procedure with relation to Multiplication of matrices 

is one of the most fundamental mathematical operations that is not directly related to 

common arithmetic. It is possible to do many other key matrix operations, such as 

Gaussian elimination, LUP decomposition, the determinant of a matrix, or the inverse of a 

matrix, more efficiently by reducing them to it. In addition, matrix multiplication is utilised 

as a subroutine in a great deal of computing issues that, at first seem, have nothing to do 

with matrices.  

The recently developed approach to matrix multiplication. One of the most fundamental 

operations in both mathematics and computer science is the multiplication of two matrices 

into a single matrix. In this section, they concentrate mostly on three different ways to 

multiply matrices. 1) The Conventional Method, 2) Stassen's Method, and 3) The 

Coppersmith and Wino Grading System. The only instance of multiplication may be found 

in the very first loop. Because this loop will run a total of n3 times, we will perform 

precisely n3 times the number of times that the multiplication operation is performed. 

Linear Equations 

One specific use of matrix multiplication has a close relationship with linear equations: if x 

designates a column vector (i.e. n×1-matrix) of n variables x1, x2, ..., xn, and A is an m-

by-n matrix, then the matrix equation 

Ax = b, 

where b is some m×1-column vector, is equivalent to the system of linear equations 

A1,1x1 + A1,2x2 + ... + A1,nxn = b1 

Am,1x1 + Am,2x2 + ... + Am,nxn = bm 



 ISSN: 2320-0294Impact Factor: 6.765  

 

97 International journal of  Engineerin, Science and Mathematicsg 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

This way, matrices can be used to compactly write and deal with multiple linear equations, 

i.e. systems of linear equations. 

Linear Transformation 

When linear transformations, also known as linear maps, are considered, matrices and 

matrix multiplication show the basic characteristics that characterize them. A real m-by-n 

matrix A gives rise to a linear transformation Rn→ Rm mapping each vector x in Rn to the 

(matrix) product Ax, which is a vector in Rm. Conversely, each linear transformation f: Rn 

→ Rm arises from a unique m-by-n matrix A: explicitly, the (i, j)-entry of A is the ith 

coordinate of f(ej), where ej = (0,...,0,1,0,...,0) is the unit vector, which has a value of 1 at 

the jth position and a value of 0 in all other positions. One may say that the matrix A is a 

representation of the linear map f, and one might also refer to A as the transformation 

matrix of f. The table that follows presents a number of matrices with dimensions of 2 by 2 

together with the accompanying linear mappings of R2. The original, which was blue, has 

been mapped into the grid and forms that are green, and the origin (0,0) has been 

highlighted with a black point. 

CONCLUSION 

In today's, linear transformations and the symmetries that are related with them play a 

significant role in both theory and experimentation. Within the realm of chemistry, 

matrices are put to use in a number of contexts, most notably with the incorporation of 

quantum theory into discussions of molecular bonding and spectroscopy. In this section of 

the essay, a research study on the linear algebra and matrices in mathematics is offered for 

your perusal. If each term in an algebraic equation is either a constant or the product of a 

constant and (the first power of) a single variable, then the equation is said to be linear. 

Equations in a linear fashion are the most straightforward form of algebraic equations. 

Equations that have a linear form might have anything from one to several variables 

included into them. Linear algebra is a subfield of mathematics that encompasses a number 

of subfields, including the study of vectors, vector spaces (also known as linear spaces), 

linear mappings (also known as linear transformations), and systems of linear equations. 

All of these subfields are considered to be topics that fall under the purview of linear 

algebra. In light of everything that has been discussed up to this point, it is conceivable to 

arrive at the conclusion that when there are extremely small matrices, each of the methods 

reward very near to the same amount of credit. It is essential to keep in mind that this is 

pertinent for any processor that is being used in the operation. When the size of the matrix 

is increased, a noticeably shorter period of time is seen. The researcher suggests that 

teachers make use of algebra tiles that are augmented by collaboration in order to assist 

students in their "knowledge of solving linear equations with one variable." This will help 

students develop their "knowledge of solving linear equations with one variable. 

 

 



 ISSN: 2320-0294Impact Factor: 6.765  

 

98 International journal of  Engineerin, Science and Mathematicsg 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

REFERENCES 

[1] Anton, Howard, “Elementary Linear Algebra,” 5th ed., New York: Wiley, ISBN 0-

471-84819-0, 1985. 

[2] Artin, Michael, “Algebra,” Prentice Hall, ISBN 978-0-89871-510-1, 1991. 

[3] Baker, Andrew J., “Matrix  Groups: An Introduction to  Lie 

[4] Group Theory,” Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-1-85233-

470-3, 2003. 

[5] Bau III, David, Trefethen, Lloyd N., “Numerical linear algebra, Philadelphia, PA: 

Society for Industrial and Applied Mathematics,” ISBN 978-0-89871-361-9 , 1995. 

[6] Beauregard, Raymond A., Fraleigh, John B., “A First Course In Linear Algebra: 

with Optional Introduction to Groups, Rings, and Fields,” Boston: Houghton 

Mifflin Co., ISBN 0-395-14017-X , 1973. 

[7] Bretscher, Otto, “Linear Algebra with Applications (3rd ed.), “Prentice Hall , 1973. 

[8] Bronson, Richard ,” Matrix Methods: An Introduction,” New York: Academic 

Press, LCCN 70097490 . 1970. 

[9] Bronson, Richard,” Schaum's outline of theory and problems of matrix operations,” 

New York: McGraw–Hill, ISBN 978-0-07-007978-6 , 1989. 

[10] Brown, William C.,” Matrices and vector spaces” New York, NY: Marcel Dekker, 

ISBN , 1991. 

[11] Anton, Howard, “Elementary Linear Algebra,” 5th ed., New York: Wiley, ISBN 0-

471-84819-0, 1985. 

[12] Artin, Michael, “Algebra,” Prentice Hall, ISBN 978-0-89871-510-1, 1991. 

[13] Baker, Andrew J., “Matrix Groups: An Introduction to Lie 

[14] Group Theory,” Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-1-85233-

470-3, 2003. 

[15] Bau III, David, Trefethen, Lloyd N., “Numerical linear algebra, Philadelphia, PA: 

Society for Industrial and Applied Mathematics,” ISBN 978-0-89871-361-9 , 1995. 

[16] Beauregard, Raymond A., Fraleigh, John B., “A First Course In Linear Algebra: 

with Optional Introduction to Groups, Rings, and Fields,” Boston: Houghton 

Mifflin Co., ISBN 0-395-14017-X , 1973. 

[17] Bretscher, Otto, “Linear Algebra with Applications (3rd ed.), “Prentice Hall , 1973. 

[18] Bronson, Richard ,” Matrix Methods: An Introduction,” New York: Academic 

Press, LCCN 70097490 . 1970. 

[19] Bronson, Richard,” Schaum's outline of theory and problems of matrix operations,” 

New York: McGraw–Hill, ISBN 978-0-07-007978-6 , 1989. 

[20] Brown, William C.,” Matrices and vector spaces” New York, NY: Marcel Dekker, 

ISBN , 1991. 

[21] Jupri,(2015). The Use of Applets to Improve Indonesian Student Performance in 

Algebra. Published Dissertation. Utrecht: Utrecht University. 

[22] CAI, JohnC,Moyer, S(2005). The Development of Students’ Algebraic Thinking in 

Earlier Graders: A Cross- Cultural Comparative Perspective, Journal on National 

Science Foundation, ZDM 2005, 37 (1), 5-15. 

[23] Jupri A., Drijvers P.and Van den Heuvel-Panhuizen, M. (2014). Difficulties in 

initial algebra learning in Indonesia. Mathematics Education Research Journal, 

https://en.wikipedia.org/wiki/John_Wiley_%26_Sons
https://en.wikipedia.org/wiki/John_Wiley_%26_Sons
https://en.wikipedia.org/wiki/Michael_Artin
https://en.wikipedia.org/wiki/Prentice_Hall
https://en.wikipedia.org/wiki/Prentice_Hall
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Lloyd_N._Trefethen
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Houghton_Mifflin_Co
https://en.wikipedia.org/wiki/Houghton_Mifflin_Co
https://en.wikipedia.org/wiki/Houghton_Mifflin_Co
https://en.wikipedia.org/wiki/Houghton_Mifflin_Co
https://en.wikipedia.org/wiki/Academic_Press
https://en.wikipedia.org/wiki/Academic_Press
https://en.wikipedia.org/wiki/Academic_Press
https://lccn.loc.gov/70097490
https://en.wikipedia.org/wiki/McGraw%E2%80%93Hill
https://en.wikipedia.org/wiki/McGraw%E2%80%93Hill
https://en.wikipedia.org/wiki/Marcel_Dekker
https://en.wikipedia.org/wiki/Marcel_Dekker
https://en.wikipedia.org/wiki/Marcel_Dekker
https://en.wikipedia.org/wiki/John_Wiley_%26_Sons
https://en.wikipedia.org/wiki/John_Wiley_%26_Sons
https://en.wikipedia.org/wiki/Michael_Artin
https://en.wikipedia.org/wiki/Prentice_Hall
https://en.wikipedia.org/wiki/Prentice_Hall
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Lloyd_N._Trefethen
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Houghton_Mifflin_Co
https://en.wikipedia.org/wiki/Houghton_Mifflin_Co
https://en.wikipedia.org/wiki/Houghton_Mifflin_Co
https://en.wikipedia.org/wiki/Houghton_Mifflin_Co
https://en.wikipedia.org/wiki/Academic_Press
https://en.wikipedia.org/wiki/Academic_Press
https://en.wikipedia.org/wiki/Academic_Press
https://lccn.loc.gov/70097490
https://en.wikipedia.org/wiki/McGraw%E2%80%93Hill
https://en.wikipedia.org/wiki/McGraw%E2%80%93Hill
https://en.wikipedia.org/wiki/Marcel_Dekker
https://en.wikipedia.org/wiki/Marcel_Dekker
https://en.wikipedia.org/wiki/Marcel_Dekker


 ISSN: 2320-0294Impact Factor: 6.765  

 

99 International journal of  Engineerin, Science and Mathematicsg 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

1(1);1-28. 

[24] Pandya J,Vala J, Chudasama C and Monaka D (2013). Testing of Matrices 

Multiplication Methods on Different Processors , International Journal of Modern 

Trends in Engineering and Research. 

[25] Shpilka A(2008),Lower bounds for matrix product. SIAM Journal on Computing, 

32(5):1185–1200, 2003. 

[26] Williams V(2012), Multiplying matrices faster than Coppersmith-Wino grad. In 

Proc.STOC, pages 887–898, 2012. 

[27] Kumar M,Tomar A and Shekhar G (2016), A Study on the Linear Algebra and 

Matrix Multiplication, International Journal of Modern Electronics and 

Communication Engineering (IJMECE) ISSN: 2321-2152 Volume No.-4, Issue 

No.-3, May, 2016 

[28] Baker, Andrew J., “Matrix Groups: An Introduction to Lie Group Theory,” Berlin, 

DE; New York, NY: Springer-Verlag, ISBN 978-1-85233-470-3, 2003 

[29] Artin, Michael, “Algebra,” Prentice Hall, ISBN 978-0-89871-510-1, 1991 

 


