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  ABSTRACT  

 
 

Unsteady Hydromagnetic Mixed Convection flow of a viscous, 

electrically conducting fluid through a porous medium confined in a 

vertical channel bounded by flat walls.  The unsteadiness in the flow 

is due to the travelling thermal wave is imposed on the bounding 

walls.  The concentration on the walls is maintained constant.  A 

uniform magnetic field of strength Ho is applied transverse to the 

boundaries.  The coupled equations governing the flow, heat and 

mass transfer are solved by using the perturbation technique with , 

the aspect ratio as a perturbation parameter.  The combined influence 

of the Soret and dissipation effects on the velocity, temperature, 

concentration, stress and rate of heat and mass transfer are discussed 

in detail.  
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1. INTRODUCTION  

 The time dependent thermal convection flows have applications in chemical engineering, space 

technology, etc. These flows can be achieved by either time dependent movement of the boundary or 

unsteady temperature of the boundary.  The unsteady temperature may be attributed to the free stream 

oscillations or oscillatory flux or temperature oscillations.  The oscillatory convection problems are important 

from the technological point of view as the effect of surface temperature oscillations on skin friction and heat 

transfer from surface to the surrounding fluid has special interest in heat transfer engineering.  

 

Flows which arise due to the interaction of the gravitational force and density differences caused by 

the simultaneous diffusion of thermal energy have many applications in geophysics and engineering.  Such 

thermal and mass diffusion plays a dominant role in a number of technological and engineering systems.  

Obviously, the understanding of this transport process is desirable in order to effectively control the overall 

transport characteristics.  The problem of combined buoyancy driven thermal and mass diffusion has been 

studied in parallel plate geometries by a few  authors, notably, Lai[1], Chen et al.,[2], Mehta and 

Nandakumar[3] and Angirasa et al.,[4].  

 Adrian Postelnicu [5], Emmanuel Osalusi et al.,[6], Mohammed Abd-El-Aziz[7] have studied 

thermo-diffusion and diffusion thermo effects on combined heat and mass transfer through a porous medium 

under different conditions.  
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Theoretical study of free convection in a horizontal porous annulus, including possible three 

dimensional and transient effects. Similar studies for fluid filled annuli are available in the literature [8]. In 

view of this, several authors, notably Tunc et al [9],Oliveira et al.,[10]. Martin Ostoja [11], El – Hakein [12], 

and Bulent Yesilata [13] have studied the effect of viscous dissipation on convective flows past an infinite 

vertical plates and through vertical channels and ducts. 

2. The Problem formulation  

We consider the motion of viscous, incompressible ,electrically conducting fluid 

through a porous medium in a vertical channel bounded by flat walls . The thermal 

buoyancy in the flow field is created by a traveling thermal wave imposed on the 

boundary wall at y = L while the boundary at y = -L is maintained at constant 

temperature T1. The walls are maintained at constant concentrations. The Boussinesq 

approximation is used  so that the density variation will be considered only in the 

buoyancy force. The viscous and Darcy dissipations are taken into account to the 

transport of heat by conduction and convection in the energy equation.  We take Soret 

effect into account in the diffusion equation .Also the kinematic viscosity , the thermal  

conductivity  k  are  treated  as constants. We choose a rectangular Cartesian system  

O(x,y)  with x-axis in the vertical direction and y-axis normal to the walls. The walls of 

the channel  are  at y =  L. The equations governing the unsteady flow and heat 

transfer are 

Equation of linear momentum 
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Equation of continuity     
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Equation of energy 
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Equation of Diffusion 
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Equation of state 

   eeeee CCTT                    (2.6)                           

where  e   is the density of the fluid in the equilibrium state, Te,Ce are the temperature 

and concentration in the equilibrium state,(u,v)are the velocity components along 

O(x,y) directions, p is the pressure, T ,C are the temperature and concentration in the 

flow region,  is the density of the fluid, is the constant coefficient of viscosity ,Cp is 

the specific heat at constant pressure,is the coefficient of thermal conductivity ,k is the 

permeability of the porous medium ,D1 is the molecular diffusivity , k11 is the cross 

diffusivity , is the coefficient of thermal expansion,* is the volumetric coefficient of 

expansion with mass fraction and Q is the strength of the constant internal heat source. 

In the equilibrium state 
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where DDe pppp ,  being the hydrodynamic pressure. 
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The flow is maintained by a constant volume flux for which a characteristic 

velocity is defined as 
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The boundary conditions for the velocity and temperature fields are  

 

 u = 0  , v = 0  ,T=T1     ,C = C1                                    on y = -L  

 22 ,)(,0,0 CCntmxSinTTTvu e              on  y = L               (2.9) 

 

where 12 TTTe   and )( ntmxSin   is the imposed traveling thermal wave. 

In view of the continuity equation we define the stream function  as 

 u = - y , v =  x                                                                                                  (2.10)                                    

 

Eliminating pressure p from equations (2.1) & (2.2) , the equations governing the flow 

in terms of  are 
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Introducing the non-dimensional variables in (2 .11 )- (2.13) as   
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(under the equilibrium state ))()(
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The energy equation in the non-dimensional form is  
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The Diffusion equation is 
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The corresponding boundary conditions are  
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The value of  on the boundary assumes the constant volumetric flow  

consistent with the hyphothesis(2.8) .Also the wall temperature varies in the axial 

direction in accordance with the prescribed arbitrary function t . 
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3. Shear Stress, Nusselt Number And Sherwood Number 

 
The Shear Stress on the channel walls is given by 
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and the corresponding expressions are 
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The local rate of heat transfer coefficient (Nusselt number Nu) on the walls has been 

calculated using the formula  
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The local rate of mass transfer coefficient( Sherwood number  Sh) on the walls has 

been calculated using the formula  
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and the corresponding expressions are 
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(3.10) where b4,………..b90 are constants   

4.Discussion of the Numerical results 

 The aim of the analysis is to discuss the flow, heat and mass transfer of a 

viscous electrically conducting fluid through a porous medium in a vertical channel 

bounded by flat walls on which a travelling thermal wave is imposed.  In this analysis, 

the viscous Darcy dissipation, Joule heating and Soret effect are taken into account.  

For computational purpose, we take P = 0.71 and  = 0.01.  It is observed that the 

temperature variation on the boundary, dissipative and Soret effects contribute 

substantially to the flow field. This contribution may be represented as perturbations 

over the mixed convective flow generated.  These perturbations not only depend on the 

wall temperature, M, Ec and So but also on the nature of the mixed convective flow.  In 

general, we note that the creation of the reversal flow in the flow field depends on 

whether the free convection effects  dominates over the forced flow or vice versa.  If 

the free convection effects are sufficiently large as to create reversal flow, the variation 

in the wall temperature, M, Ec and So affects the flow remarkably.  
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 The variation of u with Soret parameter So shows that the reversal flow which 

appears in the vicinity of the left boundary disappears for higher So > 0 and So < 0.  

Also, |u| depreciates with increase in So > 0 and an increase in |So|<0, enhances |u| in 

the left region and depreciates in the right region (Fig.1)  

 Fig.2 shows the an increase in |So|>0 depreciates v in the entire flow region 

while in |So| < 0 enhances v in the left  region and depreciates in the right region 

           An increase in So > 0  depreciates Rt in the flow region and an increase in |So|<0 

enhances Rt in the left region and reduces it in the right region (Fig. 3). 

 The non-dimensional temperature  is shown in Fig.4 An increase in Sc or So>0 

enhances , while an increase in |So| < 0  depreciates the actual temperature . 

          The behaviour of C with Soret parameter So shows that an increase in So>o 

enhances the actual concentration and depreciates with |So|<0 (Fig.5). 

 

 The shear stress on the boundary walls have been evaluated numerically for 

different G, Sc, and So, are shown in (Tables 1- 6) .  Lesser the molecular diffusivity, 

lesser   at y =1 and larger   at y = -1.  An increase in So>0 enhances   in the heating 

case and depreciates it in the cooling case at y =1 while enhances   in both the heating 

and cooling cases with increase in |So|(<0). At y = -1, the stress enhances with So>0 

and depreciates with |So| (<0) for all G (>,<0) (Tables.1 and 2)   

 

          The average Nusselt number Nu which measures the rate of heat transfer has 

been exhibited in Tables. 3 and 4. The variation of Nu with the Soret parameter So 

reveals that |Nu| at y =1 enhances with increase in |So| (>0) and depreciates with |So| 

(<0)   while   at  

y = -1, it enhances with increase in |So| (><0).   
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 The Sherwood number Sh which measures the rate of mass transfer is shown in Tables.5 and 6  for 

different parametric values. The variation of Sh with Sc shows that lesser the molecular diffusivity, higher 

|Sh| at y = 1 and lesser |Sh| at y = -1  and lesser |Sh| at y = -1.  An increase in |So| (>0) depreciates  |Sh| at 

both the walls  while an increase in |So| (<0) increases for |G| = 10
3
 and depreciates for |G| 3x10

3
 (Tables.5 

and 6). 

Figures-Captions 

Fig.1    u with S0 , Sc=1.3,N=1,M=2 

               I      II     III    IV 

       S0   0.5   1.0  -0.5  -1.0 

 Fig.2   v with S0, Sc=1.3,N=1,M=2 

             I      II     III     IV  

     S0   0.5   1.0  -0.5   -1.0  

 Fig.3    Rt with S0  Sc=1.3,N=1,M=2  

                I      II       III      IV  

     S0    0.5    1.0    -0.5   -1.0  

 Fig  4  θ with Sc &  SoG=2x10
3
m, D

-1
=2x10

3
, M=2, N=1 

                  I       II        III       IV      V       VI      VII 

      Sc     1.3    2.01     0.24     0.6    1.3      1.3     1.3 

  So     0.5       0.5    0.5      0.5    1.0     -0.5       -1 

 Fig.5  C with So 

        I      II     III      IV 

           So   0.5   1.0  -0.5   -1.0 
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 Table.1 Shear Stress ( τ ) at y =1P=0.71, ,
4


  tx D

-1
=10

3
,N=1,M=2 

 

G/τ I II III IV V VI VII 
10

3 -9.6761 15.5287 -42.709 -27.539 -14.205 -151.32 -299.69 
3x10

3 -10.132 11.7261 -265.16 -143.74 -104.85 -167.11 -312.17 
-10

3 -11.038 19.0067 -49.949 -32.934 -6.8686 -162.09 -207.23 
-3x10

3 -119.93 23.7171 -232.19 -362.41 -7.7614 -189.56 -286.78 
 

 Table.2 Shear Stress ( τ ) at y = -1 P=0.71, ,
4


  tx D

-1
=10

3
,N=1,M=2 

 

G/τ I II III IV V VI VII 
10

3 -1.0491 40.1131 0.3942 0.5227 -5.4294 -1.4265 -4.6217 
3x10

3 -3.1121 34.1477 -4.5043 -3.2796 -9.6707 -18.304 -41.315 
-10

3 5.2573 46.9346 6.7127 6.8696 11.5307 8.5845 1.6457 
-3x10

3 9.3025 54.7654 -2.3945 2.2412 15.9049 -29.015 -59.501 
 

 

 I II III IV V VI VII 

Sc 1.3 2.01 0.24 0.6 1.3 1.3 1.3 
S0 0.5 0.5 0.5 0.5 1.0 -0.5 -1.0 

 

 Table.3 Average Nusselt Number (Nu) at y =1P=0.71, ,
4


  tx N=1,M=2 

 

G/Nu I II III IV V VI VII 
10

3 -2.1681 -3.1421 -1.5071 -1.6211 -2.3371 -1.3321 -1.2846 
3x10

3 -1.4014 -3.1502 -1.2211 -1.2351 -1.4641 -1.1055 -0.9654 
-10

3 -2.1906 -3.1509 -1.5061 -1.6278 -2.3111 -1.3327 -1.2836 
-3x10

3 -1.4036 -3.1479 01.2197 -1.2509 -1.4602 -1.1025 -0.9608 
 

 Table.4 Average Nusselt Number (Nu) at y =-1 P=0.71, ,
4


  tx N=1,M=2 

 

G/Nu I II III IV V VI VII 
10

3 3.1504 2.9837 3.5057 3.4061 3.7321 3.1669 3.8022 
3x10

3 3.5277 2.9858 3.7679 3.7241 3.9155 3.4642 4.1889 
-10

3 3.1438 2.9839 3.5012 3.4006 3.7227 3.1131 3.8004 
-3x10

3 3.5243 2.9863 3.7659 3.7224 3.9025 2.4685 4.1848 
 

 

 I II III IV V VI VII 

Sc 1.3 2.01 0.24 0.6 1.3 1.3 1.3 
S0 0.5 0.5 0.5 0.5 1.0 -0.5 -1.0 

 

 

 Table.5 Sherwood Number(Sh) at y =1 P=0.71, ,
4


  tx N=1,M=2 

 

G/Sh I II III IV V VI VII 
10

3 1.0619 1.5431 0.6162 0.5469 1.2133 2.2015 3.7554 
3x10

3 0.0853 1.5356 0.5545 0.2526 -0.0693 1.8437 2.5289 
-10

3 1.0805 1.5428 0.6179 0.5538 1.2019 2.1436 3.4643 
-3x10

3 0.0854 1.5347 0.5548 0.2477 -0.0756 1.7516 2.2699 
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      Table.6  Sherwood Number(Sh) at y = -1 P=0.71, ,
4


  tx N=1,M=2 

 

G/Sh I II III IV V VI VII 
10

3 -1.3532 -1.5193 -6.7056 -1.9113 -1.3316 12.2447 24.1939 
3x10

3 -0.4354 -1.5122 29.3535 9.8665 0.1615 -9.7093 -5.9196 
-10

3 -1.3622 -1.5191 -6.7909 -1.9218 -1.3198 4.5883 67.6452 
-3x10

3 -0.4562 -1.5119 19.4073 5.5267 0.1745 -7.0936 -4.5248 
 

 

 I II III IV V VI VII 

Sc 1.3 2.01 0.24 0.6 1.3 1.3 1.3 
So 0.5 0.5 0.5 0.5 1.0 -0.5 -1.0 
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