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ABSTRACT

Let R be a semiprime ring, F:R—R be a generalized (0, 1) - reverse derivation associated
with (a,1) - reverse derivation d and H: R—R be a right o -centralizer. If
(i) F(uv) xH(uv) =0 ; (i) F(uv) xH(vwu) =0 ; (i) F(u)F(v)xH(uv)=0 ;
(iv) F(uv) £ H(uv) Cgq1; (v) F(uv) £H(vu) Cqy; (vi) F(U)F(v) = H(uv) Cqyq, for

alluv R.

KEY WORDS: Semiprime Ring; Right o-centralizer; (a,1) - Reverse Derivation;

Generalized (0, 1) - Reverse Derivation.
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1. INTRODUCTION

The concept of reverse derivation was first time introduced by Herstien [3]. Aboubakr et.al.
[1] generalized the concept of reverse derivations to generalized reverse derivations and
provided a study of relationship between generalized reverse derivations and generalized
derivations. Inspired by this, Tiwari et.al. [11] gave the notion of multiplicative
(generalized) reverse derivations. Yenigul and Argac [12] studied prime and semiprime
rings with a- derivations. Ibraheem [4] and Asma Ali et.al. [2] studied generalized reverse
derivation on semiprime or prime rings. Jaya Subba Reddy et.al. Proved some results on

reverse derivations, generalized (o, 1) derivations in semiprime rings, properties of left
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(o, 1) - derivations in prime rings and also proved some results on (a, 1) - reverse
derivations on prime near-rings (See in [5-8]). Several authors have proved annihilator
conditions of multiplicative (generalized) reverse derivations, some results of generalized
reverse derivations for semiprime rings or prime rings ([10], [9]). In this paper, we proved

some results on generalized (a, 1) - reverse derivations in semiprime rings.
2. PRELIMINARIES

Through out this paper R denote an associative ring with center Z. Recall that a ring R is
semiprime if aRa = {0} impliesa = 0. For any u,v R, the symbol [u, V] stands for the
commutator UV —vu . The (a,1) center of R denoted by Cy; and defined by
Cqr ={c Rica(r)=rc, forallr R}. An additive mapping d:R - R is called a reverse
derivation if d(uv) = d(v)u +ud(v), for allu,v R. An additive mapping d:R - R is
called a (a,1) - reverse derivation if d(uv) = d(v)a(u) +vd(u), for all u,v R. An
additive mapping F:R - R is called a generalized reverse derivation, if there exists a
reverse derivation d: R - R such that F(uv) = F(v)u + vd(u), for all u,v R. An additive
mapping F:R - R is said to be a generalized (0, 1) - reverse derivation of R, if there exists
a (0,1) - reverse derivation d: R - R such that F(uv) = F(v)a(u) + vd(u), forallu,v R.
An additive mapping H:R - R is called a right a-centralizer if H(uv) = a(u)H(v), for all
u,v R, where a is an automorphism of R. Throughout this paper, we shall make use of
the basic commentator identities:
[u, vw] = v[u, w] + [u, v]w;

[uv,w] = [u,w]v + u[v,w];
[uv,W]g1 = u[v,W]y1 + [u, w]v.

Lemma 2.1: Let R be a semiprime ring. If F:R - R is a generalized (a,1) - reverse
derivation associated with (0, 1)- reverse derivation on d, then d(uv) = d(v)a(u) + vd(u),

foralluv R.

Proof: We have F(vu) = F(u)a(v) +ud(v), forallu,v R.

Replacing v by wv in the above equation, we get

F((wv)u) = F(wa(wv) + ud(wv), for all u,v,w R. (2.1)
On the other hand, we have

F(w(vu)) = F(u)a(vw) + ud(v)a(w) + vud(w), for all u,v,w R. (2.2)
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Equating equations (2.1) and equation (2.2), we get

F(wa(wv) + ud(wv) = F(wa(vw) + ud(v)a(w) + vud(w), for all u,v,w R.
u(d(wv) —d(v)a(w) —vd(w)) =0, forallu,v,w R. (2.3)
Left multiplying equation (2.3) by d(wv) — d(v)a(w) — vd(w), we get

(d(wv) — d(v)a(w) — vd(w))u(d(wv) —d(v)a(w) —vd(w)) =0, for allu,v,w R.
(d(wv) — d(v)a(w) — vd(w))R(d(wv) — d(v)a(w) —vd(w)) =0, forall u,v,w R.
Since R is semiprime ring, we get d(wv) = d(v)a(w) + vd(w), forallv,w R.

For this d(uv) = d(v)a(u) + vd(u), forallu,v R.

That is, dis a (a,1) - reverse derivation.

Lemma 2.2: LetRbe a semiprime ring and F:R - Ris a generalized (a,1) - reverse
derivation associated with (a, 1)- reverse derivation d. If F(uv) = 0, for allu,v R, then
F=0andd=0.

Proof: We have F(uv) =0, forallu,v R. (2.4)
Replacing u by wu in equation (2.4), we get F(uv)a(w) + uvd(w) = 0.
Using (2.4) in the above equation, we get uvd(w) = 0, for all u,v,w R. (2.5)

Left multiplying equation (2.5) by vd(w), we get vd(w)uvd(w) = 0, for all u,v,w R.
vd(w)Rvd(w) =0, for allu,v,w R.

Since R is semiprime ring, we get vd(w) = 0, forallv,w R. (2.6)
Left multiplying equation (2.6) by d(w), we get d(w)vd(w) = 0, forallv,w R.

By the semiprimeness of R, we get d(w) = 0, forallw R, (2.7)
By the hypothesis F(uv) =0, forallu,v R. F(v)a(u) +vd(u) =0, forallu,v R.
Using equation (2.7) in the above equation, we get F(v)a(u) = 0, for allu,v  R. (2.8)
Right multiplying equation (2.8) by F(v), we get F(v)a(u)F(v) =0, forallu,v R.

Since 0 is an automorphism of R, we get F(v)RF(v) =0, forallv R.

SinceR is semiprime ring, we get F(v) = 0, for allv  R.

Hence F = 0and d = Owhen F(uv) =0, forallu,v R.
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Lemma 2.3: Let R be a semiprime ring and F:R - R is a generalized (a,1) - reverse
derivation associated with (0, 1)- reverse derivation d. If F(uv) Cg ;. forallu,v R, then

[d(u), u]q; =0, forallu R.
Proof: We have F(uv) Cq; forallu,v R. (2.9)

Replacingu bywu in equation (2.9), we get F(uv)a(w) +uvd(w) Cgq, forallu,v,w R.
Using equation (2.9) in the above equation, we get uvd(w) Cg;, for all u,v,w R.

[uvd(w), W]q; =0, forallu,v,w R.

uv[d(w), W]g; + [uv,w]d(w) =0, forallu,v,w R.

uv[d(w), w]g; T u[v,w]ld(w) + [u,w]vd(w) = 0, for all u,v,w R.

Replacing v by w in the above equation, we get

uw[d(w), w]q; +u[w, w]d(w) + [u, w]wd(w) = 0, for all u,w R.

Again replacing w by u in the above equation, we get

uu[d(u), uly; =0, forallu R. (2.10)
Left multiplying equation (2.10) by u[d(u), u]q i, we get u[d(u), u]q ;uu[d(u), u]q; = 0.
u[d(u), u]q ;Ru[d(u),u]q; =0, forallu R.

Since R is semiprime ring, we get u[d(u),u]y; =0, forallu R. (2.11)
Left multiplying equation (2.11) by [d(u), u]q; = 0, we get

[d(u), u]gu[d(u),u]q; =0, forallu R.

By the semiprimeness of R, we conclude that [d(u), u]y; =0, forallu R.

Lemma 2.4: Let R be a semiprime ring, F:R - R is a generalized (0,1) - reverse
derivation associated with (0,1) - reverse derivation d and H:R - R be a right
a-centralizer. If the map G: R - R is defined as G(u) = F(u) = H(u), for allu R, then G

is a generalized (0, 1)- reverse derivation associated with (0, 1)- reverse derivation d.
Proof: We suppose that G(u) = F(u) = H(u), for allu R. (2.12)
Replacingu byuv inequation (2.12), we get G(uv) = F(uv) = H(uv), for allu,v R.

G(uv) = F(v)da(u) + vd(u) = a(u)H(v), forallu,v R.

G(uv) = (F(v) £ H(v))a(u) + vd(u), forallu,v R.
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Using equation (2.12) in the above equation, we get G(uv)= G(v)a(u)+ vd(u) , for
allu,v R. Then G is a generalized (,1) - reverse derivation associated with (a,1) -

reverse derivation d.

3. MAINRESULTS

Theorem 3.1: Let R be a semiprime ring, F:R - R is a generalized (0,1) - reverse
derivation associated with (0,1) - reverse derivation d and H:R - R be a right
o -centralizer. If F(uv)*H(uv)=0 , for all u,v. R, then d=0 . Moreover,

F(uv) = F(v)a(u), forallu,v R and F =+ H.

Proof: By the hypothesis, weh ave F(uv) — H(uv) = 0, for allu,v  R.

Using equation (2.12) in the above equation, we get G(uv) =0, forallu,v R.

Using lemma 2.2 and lemma?2.4, we get G = 0. So, we have F = H. (3.1)
By the hypothesis, we have F(uv) — H(uv) =0, for allu,v R.

F(v)a(u) + vd(u) — a(u)H(v) =0, forallu,v R.

Using equation (3.1) in the above equation, we get vd(u) =0, for allu,v  R. (3.2)

The equation (3.2) is same as equation (2.6) in lemma 2.2. Thus, by same argument of

lemma 2.2, we can conclude the result d(u) =0, forallu R. (3.3)
By the definition of F, we have F(uv) = F(v)a(u) + vd(u), forallu,v R.
Using equation (3.3) in the above equation, we get F(uv) = F(v)a(u), forallu,v R.

Similar proof shows that the same conclusion holds asF(uv) + H(uv) =0, for all u,v R.

In this case, we obtain F =— H. Hence the proof is completed.

Theorem 3.2: Let R be a semiprime ring, F:R - R is a generalized (,1) - reverse
derivation associated with (0,1) - reverse derivation d and H:R - R be a right
a -centralizer. If F(uv)x*H(vu)=0 , for all u,v. R, then d=0 . Moreover,

F(uv) = F(v)a(u), for allu,v R and [F(u),a(u)] =0, forallu R.

Proof: By the hypothesis, we have F(uv) — H(vu) = 0, for allu,v R. (3.4)
Replacing u by wv and v by u in equation (3.4), we get

(F(vu) — H(uv))a(w) + a(w)H(uv) — a(u)a(w)H(v) + vud(w) = 0, for all u,v,w R.

Using equation (3.4) in the above equation, we get

a(w)a(u)H(v) — a(u)a(w)H(v) + vud(w) =0, for all u,v,w R.
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H(wv)a[w,u] +vud(w) =0, forallu,v,w R. (3.5)
Replacing w by u in equation (3.5), we get vud(u) = 0, for allu,v,w R. (3.6)

The equation (3.6) is same as equation (2.5) in lemma 2.2. Thus, by same argument of

lemma 2.2, we can conclude the result d(u) = 0, forallu R. (3.7)
By the definition of F, we have F(uv) = F(v)a(u) + vd(u), for allu,v  R.

Using (3.7) in the above equation, we get F(uv) = F(v)a(u), for allu,v  R. (3.8)
Using equation (3.7) in equation (3.5), we get H(v)da[w,u] =0, for allu,v,w R. (3.9
Replacing v by wv in equation (3.9), we get H(wv)a[w, u] = 0, for allu,v,w R.

Using equation (3.4) in the above equation, we get F(vw)a[w,u] =0, for all u,v,w R.

Using equation(3.8) in the above equation, we get F(w)a(v)a[w,u] = 0, for all u,v,w R.

Interchange u and w places in the above equation, we get

F(w)a(v)a[u,w] =0, for allu,v,w R. (3.10)
Replacing v by vw in equation (3.10), we get
F(w)a(v)a(w)a[u,w] = 0, for allu,v,w R. (3.11)

Left multiplying equation (3.10) by a(w), we get

a(w)F(w)a(v)a[u,w] =0, for all u,v,w R. (3.12)
We subtracting equation (3.12) from equation (3.11), we get

[F(u), a(w)]a(v)[a(u), a(w)] =0, for all u,v,w R.

We replacing a(u) by F(u) in the above equation, we get [F(u), a(w)]a(v)[F(u), a(w)] =0,

forallu,v,w R. Again replacing w by u in the above equation, we get
[F(w), a(w)]a(v)[F(w),a(w)] =0, forall v,w R.

Since a is an automorphism of R, we get [F(w), a(w)]R[F(w), a(w)] =0, for all w R.
Since R is semiprime ring, we get [F(u), a(u)] =0, for allu R.
Similar proof shows that the same conclusion holds as F(uv) + H(vu) = 0, for all u,v  R.

Hence the proof is completed.

Theorem 3.3: Let R be a semiprime ring, F:R - R is a generalized (,1) - reverse

derivation associated with (0,1) - reverse derivation d and H:R - R be a right
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a -centralizer. If F(u)F(v) £ H(uv)=0, for all u,v. R, then d=0 . Moreover,
F(uv) = F(v)a(u), for allu,v R and [F(u),a(u)] =0, forallu R.

Proof: By the hypothesis, we have F(u)F(v) —H(uv) =0, forallu,v R. (3.13)
Replacing u by uw in equation (3.13), we get

(F(w)a(u) + wd(u))F(v) — a(u)H(wv) =0, for all u,v,w R.

(F(w)F(v) — H(wv))a(u) + wd(u)F(v) =0, for all u,v,w R.

Using (3.13) in the above equation, we get wd(u)F(v) = 0, for allu,v,w R. (3.14)
Replacing v by tv in equation (3.14), we get wd(u)F(v)a(t) + wd(u)vd(t) = 0.

Using equation (3.14) in the above equation, we get wd(u)vd(t) =0, for all t,u,v,w R.
Replacingv by vw and t by u in the above equation, we get wd(u)vwd(u) =0, for all

uv,w R.
By the semiprimeness of R, we conclude that wd(u) = 0, for allu,w R. (3.15)

The equation (3.15) is same as equation (2.6) in lemma 2.2. Thus, by same argument of

lemma 2.2, we can conclude the result d(u) =0, forallu R. (3.16)
By the definition of F, we get F(uv) = F(v)a(u) + vd(u), for allu,v R.
Using (3.16) in the above equation, we get F(uv) = F(v)a(u), forallu,v R. (3.17)

Replacing u by vu in equation (3.13), we get F(vu)F(v) —H(vuv) =0, for all u,v R.
(F(w)F(v) — H(uv))a(v) +ud(v)F(v) =0, forallu,v R.

Using (3.13) in the above equation, we get ud(v)F(v) =0, forallu,v R. (3.18)
Right multiplying equation (3.13) by a(v), we get

F(uF(v)a(v) —H(uv)a(v) =0, forallu,v R. (3.19)
Using equation (3.18) in the above equation, we get

F(uw)F(v)a(v) —a(v)H(uv) =0, for allu,v R. (3.20)
Subtracting equation (3.20) from equation (3.19), we get

F(u)[F(v),a(v)] =0, for allu,v R. (3.21)
Replacing u by ru in equation (3.21), we get

F)a®[F(v), a(v)] + ud@®[F(v), a(v)] = 0, forall r,u,v R.

26 International Journal of Engineering, Science and Mathematics
http://www.ijesm.co.in, Email: ijesmj@gmail.com



http://www.ijesm.co.in

ISSN: 2320-0294 dImpact Factor: 6.765

Using equation (3.15) in the above equation, we get

Fwa(r)[F(v),a(v)]=0, forallr,u,v R. (3.22)
Replacing r by tr in equation (3.22), we get

F(w)at)a(r)[F(v),a(v)] =0, for all u,v,r,t R. (3.23)
Left multiplying equation (3.22) by a(t), we get

a(t)F(wa(r)[F(v),a(v)] =0, for all u,v,r,t R. (3.24)
Subtracting equation (3.24) from equation (3.23), we get

[F(u), a(t)Ja(r)[F(v),a(v)] =0, forall u,v,r,t R.

Replacing t by u and v by u in the above equation, we get

[F(u), a(u)]a(r)[F(u),a(u)] =0, forallu,r R.

Since 0 is an automorphism of R, we get [F(u), a(u)]R[F(u), a(u)] =0, forallu R.

Since R is semiprime ring, we get [F(u), a(u)] =0, forallu R.

Similar proof shows that the same conclusion holds as F(u)F(v)+H(uv) =0, for all

u,v  R. Hence the proof is completed.

Theorem 3.4: Let R be a semiprime ring, F:R - R is a generalized (a,1) - reverse
derivation associated with (a,1) - reverse derivation d and H:R - R be a right

o-centralizer. If F(uv) = H(uv) g forallu,v R, then[d(u),u] ; =0, forallu R.
Proof: By the hypothesis, we have F(uv) &+ H(uv) gforallu,v R

Using equation (2.12) in the above equation, we get G(uv) g.forallu,v R

Using lemma 2.3 and lemma2.4, we get[d(u),u] ; =0, forallu R.

Hence the proof is completed.

Theorem 3.5: Let R be a semiprime ring, F:R - R is a generalized (0,1) - reverse
derivation associated with (a,1) - reverse derivation d and H:R - R be a right

o-centralizer. If F(uv) & H(vu) gforallu,v R, then[d(u),u] ; =0,forallu R.
Proof: By the hypothesis, we have F(uv) — H(vu) g forallu,v R (3.25)

Replacing u by wv and v by u in equation (3.25), we get

F(vu)a(w) + vud(w) — a(u)a(w)H(v) g, forallu,v,w R.
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(F(vu) — H(uv))a(w) + Huv)a(w) — a(w)a(u)H(v) + vud(w) 1, for allu,v,w R.

Using equation (3.25) in the above equation, we get

o(w)a(w)H(v) — a(w)a(u)H(v) + vud(w) g, forallu,v,w R.

H(v)a[u, w] + vud(w) g, forallu,v,w R.

[H(v)da[u,w] + vud(w),w] =0, for all u,v,w R.

[H(v)a[u, w], w]g + [vud(w), W]y =0, forallu,v,w R.

[H(v)a[u, w], w]g; + vu[d(w), w]q; + v[u, w]d(wW) + [v,w]ud(w) = O, for all u,v,w R.
Replacing w by v in the above equation, we get

[H(v)a[u, v], v]g; + vu[d(v), V]g; + v[u, v]d(v) = 0, for allu,v R.

Replacing u by v in the above equation, we get vu[d(v),v] ; =0, forallv R. (3.26)

The equation (3.26) is same as equation (2.10) in lemma 2.3. Thus, by same argument of

lemma 2.3, we can conclude the result [d(u),u] ; =0, forallu R.

Similar proof shows that the same conclusion holds as F(uv) + H(vu) ., forallu,v

R. Hence the proof is completed.

Theorem 3.6: Let R be a semiprime ring, F:R - R is a generalized (0,1) - reverse
derivation associated with (0,1) - reverse derivation d and H:R - R be a right

a-centralizer. If F(u)F(v) = H(uv) gforallu,v R, then[d(u),u] ; =0, forallu R.
Proof: By the hypothesis, we have F(u)F(v) — H(uv) g forallu,v R (3.27)
Replacing u by wu in equation (3.27), we get

(F(w)a(w) + ud(w))F(v) — a(w)H(uv) 1, forallu,v,w R.

(F(w)F(v) — H(uv))a(w) + ud(w)F(v) g, forallu,v,w R.

Using equation (3.27) in the above equation, we get

ud(w)F(v) g, forallu,v,w R. (3.28)

Replacing v by vt in equation (3.28), we getud(w)F(t)a(v) + ud(w)td(v) .1, for all

t,u,v,w R.

Using equation (3.28) in the above equation, we get ud(w)td(v) g, forall t,u,v,w R.
Replacing td(v) by v in the above equation, we get ud(w)v g, forallu,v,w R.
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[ud(w)v,w] =0, forallu,v,w R. (3.29)
uv[d(w),w] ;+[u,w]v+u[v,w]=0,forallu,v,w R.

Replacing w byu in the above equation, we get uv[d(u),u] ; +u[v,u] =0, forallu,v R.
Again replacing v b yu in the above equation, we get

uu[d(u),u] ;=0,forallu R. (3.30)

The equation (3.30) is same as equation (2.10) in lemma 2.3. Thus, by same argument of

lemma 2.3, we can conclude the result [d(u),u] ; =0, forallu R.

Similar proof shows that the same conclusion holds as F(u)F(v)+ H(uv) .. for all

u,v  R. Hence the proof is completed.
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