International Journal of Engineering, Science and Mathematics

Vol. 12 Issue 10, October 2023,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

SOME CENTRALIZING THEOREMS ON GENERALIZED(α, 1)- REVERSE DERIVATIONS IN SEMI PRIME RINGS

Sk. Haseena¹, C.Jaya Subba Reddy² and C.Venkata Sai Raghavendra Reddy³

skhaseena547@gmail.com¹, cjsreddysvu@gmail.com^{2,3}

¹Research Scholar, Department of Mathematics, S.V.University, Tirupati- 517502, Andhra Pradesh, India.

²Department of Mathematics, S.V.University, Tirupati- 517502, Andhra Pradesh, India.

³Amrita Vishwa Vidyapeetham, Bengaluru campus, Bangalur, Karnataka, 560035, India.

ABSTRACT

Let R be a semiprime ring, F:R \rightarrow R be a generalized (α , 1) - reverse derivation associated with (α , 1) - reverse derivation d and H: R \rightarrow R be a right α -centralizer. If (i) F(uv) \pm H(uv) = 0 ; (ii) F(uv) \pm H(uv) = 0 ; (iii) F(u)F(v) \pm H(uv) = 0 ; (iv) F(uv) \pm H(uv) \in C $_{\alpha,1}$; (v) F(uv) \pm H(uv) \in C $_{\alpha,1}$; (vi) F(u)F(v) \pm H(uv) \in C $_{\alpha,1}$, for all u, v \in R.

KEY WORDS: Semiprime Ring; Right α -centralizer; $(\alpha, 1)$ - Reverse Derivation; Generalized $(\alpha, 1)$ - Reverse Derivation.

AMS Subject Classification: 16N60; 16S20; 16W25; 16U80.

1. INTRODUCTION

The concept of reverse derivation was first time introduced by Herstien [3]. Aboubakr et.al. [1] generalized the concept of reverse derivations to generalized reverse derivations and provided a study of relationship between generalized reverse derivations and generalized derivations. Inspired by this, Tiwari et.al. [11] gave the notion of multiplicative (generalized) reverse derivations. Yenigul and Argac [12] studied prime and semiprime rings with α - derivations. Ibraheem [4] and Asma Ali et.al. [2] studied generalized reverse derivation on semiprime or prime rings. Jaya Subba Reddy et.al. Proved some results on reverse derivations, generalized (σ , τ) derivations in semiprime rings, properties of left

 $(\alpha, 1)$ - derivations in prime rings and also proved some results on $(\alpha, 1)$ - reverse derivations on prime near-rings (See in [5-8]). Several authors have proved annihilator conditions of multiplicative (generalized) reverse derivations, some results of generalized reverse derivations for semiprime rings or prime rings ([10], [9]). In this paper, we proved some results on generalized $(\alpha, 1)$ - reverse derivations in semiprime rings.

2. PRELIMINARIES

Through out this paper R denote an associative ring with center Z. Recall that a ring R is semiprime if $aRa = \{0\}$ implies a = 0. For any $u, v \in R$, the symbol [u, v] stands for the commutator uv - vu. The $(\alpha, 1)$ center of R denoted by $C_{\alpha, 1}$ and defined by $C_{\alpha, 1} = \{c \in R : c\alpha(r) = rc, \text{ for all } r \in R\}$. An additive mapping $d: R \to R$ is called a reverse derivation if d(uv) = d(v)u + ud(v), for all $u, v \in R$. An additive mapping $d: R \to R$ is called a $(\alpha, 1)$ - reverse derivation if $d(uv) = d(v)\alpha(u) + vd(u)$, for all $u, v \in R$. An additive mapping $F: R \to R$ is called a generalized reverse derivation, if there exists a reverse derivation $d: R \to R$ such that F(uv) = F(v)u + vd(u), for all $u, v \in R$. An additive mapping $F: R \to R$ is said to be a generalized $(\alpha, 1)$ - reverse derivation of R, if there exists a $(\alpha, 1)$ - reverse derivation $d: R \to R$ such that $F(uv) = F(v)\alpha(u) + vd(u)$, for all $u, v \in R$. An additive mapping $H: R \to R$ is called a right α -centralizer if $H(uv) = \alpha(u)H(v)$, for all $u, v \in R$, where α is an automorphism of R. Throughout this paper, we shall make use of the basic commentator identities:

$$[u, vw] = v[u, w] + [u, v]w;$$

$$[uv, w] = [u, w]v + u[v, w];$$

$$[uv, w]_{\alpha, 1} = u[v, w]_{\alpha, 1} + [u, w]v.$$

Lemma 2.1: Let R be a semiprime ring. If F: R \rightarrow R is a generalized $(\alpha, 1)$ - reverse derivation associated with $(\alpha, 1)$ - reverse derivation on d, then $d(uv) = d(v)\alpha(u) + vd(u)$, for all $u, v \in R$.

Proof: We have $F(vu) = F(u)\alpha(v) + ud(v)$, for all $u, v \in R$.

Replacing v by wv in the above equation, we get

$$F((wv)u) = F(u)\alpha(wv) + ud(wv), \text{ for all } u, v, w \in R.$$
(2.1)

On the other hand, we have

$$F(w(vu)) = F(u)\alpha(vw) + ud(v)\alpha(w) + vud(w), \text{ for all } u, v, w \in R.$$
(2.2)

Equating equations (2.1) and equation (2.2), we get

 $F(u)\alpha(wv) + ud(wv) = F(u)\alpha(vw) + ud(v)\alpha(w) + vud(w)$, for all u, v, w \in R.

$$u(d(wv) - d(v)\alpha(w) - vd(w)) = 0, \text{ for all } u, v, w \in R.$$
(2.3)

Left multiplying equation (2.3) by $d(wv) - d(v)\alpha(w) - vd(w)$, we get

$$(d(wv) - d(v)\alpha(w) - vd(w))u(d(wv) - d(v)\alpha(w) - vd(w)) = 0, \text{ for all } u, v, w \in R.$$

$$(d(wv) - d(v)\alpha(w) - vd(w))R(d(wv) - d(v)\alpha(w) - vd(w)) = 0$$
, for all u, v, w $\in R$.

Since R is semiprime ring, we get $d(wv) = d(v)\alpha(w) + vd(w)$, for all $v, w \in R$.

For this $d(uv) = d(v)\alpha(u) + vd(u)$, for all $u, v \in R$.

That is, d is a $(\alpha,1)$ - reverse derivation.

Lemma 2.2: Let R be a semiprime ring and $F: R \to R$ is a generalized $(\alpha, 1)$ - reverse derivation associated with $(\alpha, 1)$ - reverse derivation d. If F(uv) = 0, for all $u, v \in R$, then F = 0 and d = 0.

Proof: We have
$$F(uv) = 0$$
, for all $u, v \in R$. (2.4)

Replacing u by wu in equation (2.4), we get $F(uv)\alpha(w) + uvd(w) = 0$.

Using (2.4) in the above equation, we get
$$uvd(w) = 0$$
, for all $u, v, w \in R$. (2.5)

Left multiplying equation (2.5) by vd(w), we get vd(w)uvd(w) = 0, for all $u, v, w \in R$. vd(w)Rvd(w) = 0, for all $u, v, w \in R$.

Since R is semiprime ring, we get
$$vd(w) = 0$$
, for all $v, w \in R$. (2.6)

Left multiplying equation (2.6) by d(w), we get d(w)vd(w) = 0, for all $v, w \in R$.

By the semiprimeness of R, we get
$$d(w) = 0$$
, for all $w \in R$. (2.7)

By the hypothesis F(uv) = 0, for all $u, v \in R$. $F(v)\alpha(u) + vd(u) = 0$, for all $u, v \in R$.

Using equation (2.7) in the above equation, we get
$$F(v)\alpha(u) = 0$$
, for all $u, v \in R$. (2.8)

Right multiplying equation (2.8) by F(v), we get $F(v)\alpha(u)F(v) = 0$, for all $u, v \in R$.

Since α is an automorphism of R, we get F(v)RF(v) = 0, for all $v \in R$.

Since R is semiprime ring, we get F(v) = 0, for all $v \in R$.

Hence F = 0 and d = 0 when F(uv) = 0, for all $u, v \in R$.

Lemma 2.3: Let R be a semiprime ring and F: R \rightarrow R is a generalized $(\alpha, 1)$ - reverse derivation associated with $(\alpha, 1)$ - reverse derivation d. If $F(uv) \in C_{\alpha,1}$, for all $u, v \in R$, then $[d(u), u]_{\alpha,1} = 0$, for all $u \in R$.

Proof: We have
$$F(uv) \in C_{\alpha,1}$$
, for all $u, v \in R$. (2.9)

Replacing bywu in equation (2.9), we get $F(uv)\alpha(w) + uvd(w) \in C_{\alpha,1}$, for all $u, v, w \in R$. Using equation (2.9) in the above equation, we get $uvd(w) \in C_{\alpha,1}$, for all $u, v, w \in R$. $[uvd(w), w]_{\alpha,1} = 0$, for all $u, v, w \in R$.

 $uv[d(w), w]_{\alpha,1} + [uv, w]d(w) = 0$, for all $u, v, w \in R$.

 $uv[d(w),w]_{\alpha,1}+u[v,w]d(w)+[u,w]vd(w)=0, \text{ for all } u,v,w\in R.$

Replacing v by w in the above equation, we get

$$uw[d(w), w]_{\alpha,1} + u[w, w]d(w) + [u, w]wd(w) = 0$$
, for all $u, w \in R$.

Again replacing w by u in the above equation, we get

$$uu[d(u), u]_{\alpha, 1} = 0$$
, for all $u \in \mathbb{R}$. (2.10)

Left multiplying equation (2.10) by $u[d(u), u]_{\alpha,1}$, we get $u[d(u), u]_{\alpha,1}uu[d(u), u]_{\alpha,1} = 0$.

 $u[d(u), u]_{\alpha, 1} Ru[d(u), u]_{\alpha, 1} = 0$, for all $u \in R$.

Since R is semiprime ring, we get
$$u[d(u), u]_{\alpha, 1} = 0$$
, for all $u \in R$. (2.11)

Left multiplying equation (2.11) by $[d(u), u]_{\alpha,1} = 0$, we get

 $[d(u), u]_{\alpha,1}u[d(u), u]_{\alpha,1} = 0$, for all $u \in R$.

By the semiprimeness of R, we conclude that $[d(u), u]_{\alpha,1} = 0$, for all $u \in R$.

Lemma 2.4: Let R be a semiprime ring, $F: R \to R$ is a generalized $(\alpha, 1)$ - reverse derivation associated with $(\alpha, 1)$ - reverse derivation d and $H: R \to R$ be a right α -centralizer. If the map $G: R \to R$ is defined as $G(u) = F(u) \pm H(u)$, for all $u \in R$, then G is a generalized $(\alpha, 1)$ - reverse derivation associated with $(\alpha, 1)$ - reverse derivation d.

Proof: We suppose that
$$G(u) = F(u) \pm H(u)$$
, for all $u \in R$. (2.12)

Replacing ubyuv inequation (2.12), we get $G(uv) = F(uv) \pm H(uv)$, for all $u, v \in R$.

 $G(uv) = F(v)\alpha(u) + vd(u) \pm \alpha(u)H(v)$, for all $u, v \in R$.

 $G(uv) = (F(v) \pm H(v))\alpha(u) + vd(u)$, for all $u, v \in R$.

Using equation (2.12) in the above equation, we get $G(uv) = G(v)\alpha(u) + vd(u)$, for all $u, v \in R$. Then G is a generalized $(\alpha, 1)$ - reverse derivation associated with $(\alpha, 1)$ - reverse derivation d.

3. MAINRESULTS

Theorem 3.1: Let R be a semiprime ring, $F: R \to R$ is a generalized $(\alpha, 1)$ - reverse derivation associated with $(\alpha, 1)$ - reverse derivation d and $H: R \to R$ be a right α -centralizer. If $F(uv) \pm H(uv) = 0$, for all $u, v \in R$, then d = 0. Moreover, $F(uv) = F(v)\alpha(u)$, for all $u, v \in R$ and $F = \pm H$.

Proof: By the hypothesis, weh ave F(uv) - H(uv) = 0, for all $u, v \in R$.

Using equation (2.12) in the above equation, we get G(uv) = 0, for all $u, v \in R$.

Using lemma 2.2 and lemma 2.4, we get
$$G = 0$$
. So, we have $F = H$. (3.1)

By the hypothesis, we have F(uv) - H(uv) = 0, for all $u, v \in R$.

$$F(v)\alpha(u) + vd(u) - \alpha(u)H(v) = 0$$
, for all $u, v \in R$.

Using equation (3.1) in the above equation, we get
$$vd(u) = 0$$
, for all $u, v \in R$. (3.2)

The equation (3.2) is same as equation (2.6) in lemma 2.2. Thus, by same argument of lemma 2.2, we can conclude the result d(u) = 0, for all $u \in R$. (3.3)

By the definition of F, we have $F(uv) = F(v)\alpha(u) + vd(u)$, for all $u, v \in R$.

Using equation (3.3) in the above equation, we get $F(uv) = F(v)\alpha(u)$, for all $u, v \in R$.

Similar proof shows that the same conclusion holds as F(uv) + H(uv) = 0, for all $u, v \in R$. In this case, we obtain F = -H. Hence the proof is completed.

Theorem 3.2: Let R be a semiprime ring, $F: R \to R$ is a generalized $(\alpha, 1)$ - reverse derivation associated with $(\alpha, 1)$ - reverse derivation d and $H: R \to R$ be a right α -centralizer. If $F(uv) \pm H(vu) = 0$, for all $u, v \in R$, then d = 0. Moreover, $F(uv) = F(v)\alpha(u)$, for all $u, v \in R$ and $[F(u), \alpha(u)] = 0$, for all $u \in R$.

Proof: By the hypothesis, we have
$$F(uv) - H(vu) = 0$$
, for all $u, v \in R$. (3.4)

Replacing u by wv and v by u in equation (3.4), we get

$$(F(vu) - H(uv))\alpha(w) + \alpha(w)H(uv) - \alpha(u)\alpha(w)H(v) + vud(w) = 0$$
, for all $u, v, w \in R$.

Using equation (3.4) in the above equation, we get

$$\alpha(w)\alpha(u)H(v) - \alpha(u)\alpha(w)H(v) + vud(w) = 0$$
, for all $u, v, w \in R$.

$$H(v)\alpha[w, u] + vud(w) = 0, \text{ for all } u, v, w \in \mathbb{R}.$$
(3.5)

Replacing w by u in equation (3.5), we get
$$vud(u) = 0$$
, for all $u, v, w \in R$. (3.6)

The equation (3.6) is same as equation (2.5) in lemma 2.2. Thus, by same argument of lemma 2.2, we can conclude the result d(u) = 0, for all $u \in R$. (3.7)

By the definition of F, we have $F(uv) = F(v)\alpha(u) + vd(u)$, for all $u, v \in R$.

Using (3.7) in the above equation, we get
$$F(uv) = F(v)\alpha(u)$$
, for all $u, v \in R$. (3.8)

Using equation (3.7) in equation (3.5), we get
$$H(v)\alpha[w, u] = 0$$
, for all $u, v, w \in R$. (3.9)

Replacing v by wv in equation (3.9), we get $H(wv)\alpha[w, u] = 0$, for all $u, v, w \in R$.

Using equation (3.4) in the above equation, we get $F(vw)\alpha[w, u] = 0$, for all $u, v, w \in R$.

Using equation(3.8) in the above equation, we get $F(w)\alpha(v)\alpha[w,u] = 0$, for all $u, v, w \in R$. Interchange u and w places in the above equation, we get

$$F(u)\alpha(v)\alpha[u,w] = 0, \text{ for all } u, v, w \in R. \tag{3.10}$$

Replacing v by vw in equation (3.10), we get

$$F(u)\alpha(v)\alpha(w)\alpha[u,w] = 0, \text{ for all } u,v,w \in R.$$
(3.11)

Left multiplying equation (3.10) by $\alpha(w)$, we get

$$\alpha(\mathbf{w})\mathbf{F}(\mathbf{w})\alpha(\mathbf{v})\alpha[\mathbf{u},\mathbf{w}] = 0, \text{ for all } \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{R}. \tag{3.12}$$

We subtracting equation (3.12) from equation (3.11), we get

$$[F(u), \alpha(w)]\alpha(v)[\alpha(u), \alpha(w)] = 0$$
, for all $u, v, w \in R$.

We replacing $\alpha(u)$ by F(u) in the above equation, we get $[F(u), \alpha(w)]\alpha(v)[F(u), \alpha(w)] = 0$, for all $u, v, w \in R$. Again replacing w by u in the above equation, we get

$$[F(w), \alpha(w)]\alpha(v)[F(w), \alpha(w)] = 0$$
, for all $v, w \in R$.

Since α is an automorphism of R, we get $[F(w), \alpha(w)]R[F(w), \alpha(w)] = 0$, for all $w \in R$. Since R is semiprime ring, we get $[F(u), \alpha(u)] = 0$, for all $u \in R$.

Similar proof shows that the same conclusion holds as F(uv) + H(vu) = 0, for all $u, v \in R$. Hence the proof is completed.

Theorem 3.3: Let R be a semiprime ring, F: R \rightarrow R is a generalized $(\alpha, 1)$ - reverse derivation associated with $(\alpha, 1)$ - reverse derivation d and H: R \rightarrow R be a right

 α -centralizer. If $F(u)F(v) \pm H(uv) = 0$, for all $u,v \in R$, then d=0. Moreover, $F(uv) = F(v)\alpha(u), \text{ for all } u,v \in R \text{ and } [F(u),\alpha(u)] = 0, \text{ for all } u \in R.$

Proof: By the hypothesis, we have
$$F(u)F(v) - H(uv) = 0$$
, for all $u, v \in R$. (3.13)

Replacing u by uw in equation (3.13), we get

$$(F(w)\alpha(u) + wd(u))F(v) - \alpha(u)H(wv) = 0$$
, for all $u, v, w \in R$.

$$(F(w)F(v) - H(wv))\alpha(u) + wd(u)F(v) = 0$$
, for all $u, v, w \in R$.

Using (3.13) in the above equation, we get
$$wd(u)F(v) = 0$$
, for all $u, v, w \in R$. (3.14)

Replacing v by tv in equation (3.14), we get $wd(u)F(v)\alpha(t) + wd(u)vd(t) = 0$.

Using equation (3.14) in the above equation, we get wd(u)vd(t) = 0, for all $t, u, v, w \in R$. Replacing v by vw and t by u in the above equation, we get wd(u)vwd(u) = 0, for all $u, v, w \in R$.

By the semiprimeness of R, we conclude that
$$wd(u) = 0$$
, for all $u, w \in R$. (3.15)

The equation (3.15) is same as equation (2.6) in lemma 2.2. Thus, by same argument of lemma 2.2, we can conclude the result d(u) = 0, for all $u \in R$. (3.16)

By the definition of F, we get $F(uv) = F(v)\alpha(u) + vd(u)$, for all $u, v \in R$.

Using (3.16) in the above equation, we get
$$F(uv) = F(v)\alpha(u)$$
, for all $u, v \in R$. (3.17)

Replacing u by vu in equation (3.13), we get F(vu)F(v) - H(vuv) = 0, for all $u, v \in R$. $(F(u)F(v) - H(uv))\alpha(v) + ud(v)F(v) = 0$, for all $u, v \in R$.

Using (3.13) in the above equation, we get
$$ud(v)F(v) = 0$$
, for all $u, v \in R$. (3.18)

Right multiplying equation (3.13) by $\alpha(v)$, we get

$$F(u)F(v)\alpha(v) - H(uv)\alpha(v) = 0, \text{ for all } u, v \in R.$$
(3.19)

Using equation (3.18) in the above equation, we get

$$F(u)F(v)\alpha(v) - \alpha(v)H(uv) = 0, \text{ for all } u, v \in R.$$
(3.20)

Subtracting equation (3.20) from equation (3.19), we get

$$F(u)[F(v), \alpha(v)] = 0, \text{ for all } u, v \in R.$$
(3.21)

Replacing u by ru in equation (3.21), we get

$$F(u)\alpha(r)[F(v), \alpha(v)] + ud(r)[F(v), \alpha(v)] = 0$$
, for all $r, u, v \in R$.

Using equation (3.15) in the above equation, we get

$$F(u)\alpha(r)[F(v),\alpha(v)] = 0, \text{ for all } r, u, v \in R.$$
(3.22)

Replacing r by tr in equation (3.22), we get

$$F(u)\alpha(t)\alpha(r)[F(v),\alpha(v)] = 0, \text{ for all } u, v, r, t \in \mathbb{R}. \tag{3.23}$$

Left multiplying equation (3.22) by $\alpha(t)$, we get

$$\alpha(t)F(u)\alpha(r)[F(v),\alpha(v)] = 0, \text{ for all } u,v,r,t \in \mathbb{R}. \tag{3.24}$$

Subtracting equation (3.24) from equation (3.23), we get

$$[F(u), \alpha(t)]\alpha(r)[F(v), \alpha(v)] = 0$$
, for all $u, v, r, t \in R$.

Replacing t by u and v by u in the above equation, we get

$$[F(u), \alpha(u)]\alpha(r)[F(u), \alpha(u)] = 0$$
, for all $u, r \in R$.

Since α is an automorphism of R, we get $[F(u), \alpha(u)]R[F(u), \alpha(u)] = 0$, for all $u \in R$.

Since R is semiprime ring, we get $[F(u), \alpha(u)] = 0$, for all $u \in R$.

Similar proof shows that the same conclusion holds as F(u)F(v) + H(uv) = 0, for all $u, v \in R$. Hence the proof is completed.

Theorem 3.4: Let R be a semiprime ring, F: R \rightarrow R is a generalized $(\alpha, 1)$ - reverse derivation associated with $(\alpha, 1)$ - reverse derivation d and H: R \rightarrow R be a right α -centralizer. If F(uv) \pm H(uv) \in C $_{\alpha, l}$, for all u, v \in R, then $[d(u), u]_{\alpha, l} = 0$, for all u \in R.

Proof: By the hypothesis, we have $F(uv) \pm H(uv) \in C_{\alpha,l}$, for all $u, v \in R$.

Using equation (2.12) in the above equation, we get $G(uv) \in C_{\alpha,l}$, for all $u, v \in R$.

Using lemma 2.3 and lemma 2.4, we get $[d(u), u]_{\alpha, 1} = 0$, for all $u \in R$.

Hence the proof is completed.

Theorem 3.5: Let R be a semiprime ring, F: R \rightarrow R is a generalized $(\alpha, 1)$ - reverse derivation associated with $(\alpha, 1)$ - reverse derivation d and H: R \rightarrow R be a right α -centralizer. If F(uv) \pm H(vu) \in $C_{\alpha, I}$, for all u, v \in R, then $[d(u), u]_{\alpha, I} = 0$, for all u \in R.

Proof: By the hypothesis, we have
$$F(uv) - H(vu) \in C_{\alpha,I}$$
, for all $u, v \in R$. (3.25)

Replacing u by wv and v by u in equation (3.25), we get

 $F(vu)\alpha(w) + vud(w) - \alpha(u)\alpha(w)H(v) \in C_{\alpha,l}$, for all $u, v, w \in R$.

 $(F(vu) - H(uv))\alpha(w) + H(uv)\alpha(w) - \alpha(w)\alpha(u)H(v) + vud(w) \in C_{\alpha,1}$, for all $u, v, w \in R$. Using equation (3.25) in the above equation, we get

$$\alpha(u)\alpha(w)H(v) - \alpha(w)\alpha(u)H(v) + vud(w) \in C_{\alpha,l}$$
, for all $u, v, w \in R$.

 $H(v)\alpha[u, w] + vud(w) \in C_{\alpha, 1}$, for all $u, v, w \in R$.

 $[H(v)\alpha[u, w] + vud(w), w] = 0$, for all $u, v, w \in R$.

 $[H(v)\alpha[u, w], w]_{\alpha,1} + [vud(w), w]_{\alpha,1} = 0$, for all $u, v, w \in R$.

$$[H(v)\alpha[u, w], w]_{\alpha,1} + vu[d(w), w]_{\alpha,1} + v[u, w]d(w) + [v, w]ud(w) = 0$$
, for all $u, v, w \in R$.

Replacing w by v in the above equation, we get

$$[H(v)\alpha[u, v], v]_{\alpha, 1} + vu[d(v), v]_{\alpha, 1} + v[u, v]d(v) = 0$$
, for all $u, v \in R$.

Replacing u by v in the above equation, we get $vu[d(v), v]_{\alpha, 1} = 0$, for all $v \in \mathbb{R}$. (3.26)

The equation (3.26) is same as equation (2.10) in lemma 2.3. Thus, by same argument of lemma 2.3, we can conclude the result $[d(u), u]_{\alpha, l} = 0$, for all $u \in R$.

Similar proof shows that the same conclusion holds as $F(uv) + H(vu) \in C_{\alpha,1}$, for all $u, v \in R$. Hence the proof is completed.

Theorem 3.6: Let R be a semiprime ring, F: R \rightarrow R is a generalized $(\alpha, 1)$ - reverse derivation associated with $(\alpha, 1)$ - reverse derivation d and H: R \rightarrow R be a right α -centralizer. If F(u)F(v) \pm H(uv) $\in C_{\alpha, I}$, for all u, v \in R, then $[d(u), u]_{\alpha, I} = \theta$, for all u \in R.

Proof: By the hypothesis, we have
$$F(u)F(v) - H(uv) \in C_{\alpha,I}$$
, for all $u, v \in R$. (3.27)

Replacing u by wu in equation (3.27), we get

$$(F(u)\alpha(w) + ud(w))F(v) - \alpha(w)H(uv) \in C_{\alpha,l}$$
, for all $u, v, w \in R$.

$$(F(u)F(v) - H(uv))\alpha(w) + ud(w)F(v) \in C_{\alpha,1}$$
, for all $u, v, w \in R$.

Using equation (3.27) in the above equation, we get

$$ud(w)F(v) \in \mathcal{C}_{\alpha, l}$$
, for all $u, v, w \in \mathbb{R}$. (3.28)

Replacing v by vt in equation (3.28), we get $ud(w)F(t)\alpha(v) + ud(w)td(v) \in C_{\alpha,1}$, for all $t, u, v, w \in \mathbb{R}$.

Using equation (3.28) in the above equation, we get $ud(w)td(v) \in C_{\alpha, l}$, for all $t, u, v, w \in R$.

Replacing td(v) by v in the above equation, we get ud(w)v $\in C_{\alpha,l}$, for all u, v, w $\in R$.

$$[ud(w)v, w] = 0$$
, for all $u, v, w \in R$. (3.29)

 $uv[d(w), w]_{\alpha, l} + [u, w]v + u[v, w] = 0$, for all $u, v, w \in R$.

Replacing w byu in the above equation, we get $uv[d(u), u]_{\alpha, 1} + u[v, u] = 0$, for all $u, v \in R$.

Again replacing v b yu in the above equation, we get

$$uu[d(u), u]_{\alpha, l} = 0$$
, for all $u \in \mathbb{R}$. (3.30)

The equation (3.30) is same as equation (2.10) in lemma 2.3. Thus, by same argument of lemma 2.3, we can conclude the result $[d(u), u]_{\alpha, l} = 0$, for all $u \in R$.

Similar proof shows that the same conclusion holds as $F(u)F(v) + H(uv) \in C_{\alpha,1}$, for all $u, v \in R$. Hence the proof is completed.

REFERENCES

- [1] Aboubakr.A and Gonalaz.S., Generalized reverse derivations on semiprime rings, Siberian Math. J., 56(2)(2015), 199-205.
- [2] Asma Ali and Ambreem Bano, Multiplicative (Generalized) reverse derivations on semiprime rings, European J. Pure and Appl. Math., 11(3)(2018), 717-729.
- [3] Herstein.I.N., Jordan derivations of prime rings, Proc. Amer. Math. Soci., 8(1957), 1104-1110.
- [4] Ibraheem.A.M., Right ideal and Generalized reverse derivations on prime rings, Amer. J. Comp. Appl. Math., 6(4)(2016), 162-164.
- [5] Jaya Subba Reddy.C and Hemavathi.K., Reverse Derivations on Semiprime rings, Ultra Scientist of Physical Sciences (Int. J. Phy. Sci.), 26(1)A(2014), 111-113.
- [6] Jaya Subba Reddy.C, Subbarayudu.K and Ramoorthy Reddy.B., Generalized (σ , τ) derivation in semiprime rings, Mth. Sci. Int. Res. J., 7(1)(2018), 161-166.
- [7] Jaya Subba Reddy.C, Haseena.Sk., Homomorphism or Anti-Homomorphism of Left (α, 1) derivations in Prime rings, Int. J. Mathematical Archive, 12(5)(2021), 45-49.
- [8] Jaya Subba Reddy.C and Haseena.Sk., (α, 1)- Reverse derivations on Prime near-rings, Int. J. Algebra, 15(4)(2021), 165-170.
- [9] Jaya Subba Reddy.C, Haseena.Sk. and Chennupalle Divya, On Jordan ideals and Generalized (α, 1) Reverse derivations in *-prime rings, Journal of University of Shanghai for Science and Technology, 23(11)(2021), 236-242.

- [10] Jaya Subba Reddy.C, Haseena.Sk and Chennupalle Divya, Centralizing properties of (α, 1) Reverse derivations in semiprime rings, Journal of Emerging Technologies and Innovative Research, 8(12)(2021), 45-50.
- [11] Jaya Subba Reddy.C, Haseena.Sk and Venkata Sai Raghavendra Reddy.C., Symmetric Generalized (α, 1) Biderivations in Rings, The International Journal of Analytical and Experimental Modal analysis, 14(6)(2022), 1944-1949.
- [12] Jaya Subba Reddy.C and Haseena.Sk., Symmetric Generalized Reverse (α, 1) Biderivations in Rings, JP Journal of Algebra, Number Theory and its applications, 58(2022), 37-43.
- [13] Samman.M and Alyamani.N., Derivations and reverse derivations in semiprime rings, Int. J. Forum, 39(2)(2007), 1895-1902.
- [14] Sandhu.G.S and Kumar.D., Annihilator conditions of multiplicative reverse derivation on prime rings, Int. Elec .J. Algebra, 25(2019), 87-103.
- [15] Tiwari.S.T, Sharma.R.K and Dhara.B., Some theorems of commutatively on semiprime rings with mapping, Southeast Asian Bull. Math., 42(2)(2018), 279-292.
- [16] Yenigul.M.S. and Argac.N., On prime and semiprime rings withα-derivations, Turk. J. Math., 18(1994), 280-284.