
International Journal of Engineering, Science and Mathematics 
Vol. 11 Issue 11, November 2022,  

ISSN: 2320-0294 Impact Factor: 6.765 

Journal Homepage: http://www.ijesm.co.in, Email: editorijmie@gmail.com                       
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & 

Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A 

  

122 International Journal of Engineering, Science and Mathematics 

: http://www.ijesm.co.in, Email: editorijmie@gmail.com 

 

Discrete Semi Group of Initial Boundary Value Problems 

 

Jatinder Kaur
 

Associate Professor, Department of Mathematics, Guru Nanak Girls College                                    

(of Affiliation) Yamunanagar, Haryana, India  

Email id:jatinderkaur.gng@gmail.com 

 

Abstract 

The discrete semi group of initial-BVP for first order PDEs is obtainable in the present 

study. We derive an adapted problem posed on a bounded domain whose explanation is 

identical to the explanation of the novel problematic on a slighter bounded domain for the 

IVP.On the slighter bounded domain, arithmetical explanation to the adapted problematic 

diverges to the resolution to the unique issue. We offer discrete semi group approximations 

for the IVP by decomposing it into two problems, each of which generates a semi group. 

 

Keywords: SemiGroup, IVP 

 

1. Introduction 

In arithmetic, in the pitch of partial differential equations (PDF), an initial value problem 

(IVP)is a PDE composed with a detailed value christened the initial circumstance of the 

indefinite function at a specified point in the area of the explanation. In physics and other 

fields, addressing an initial value issue is a common part of modelling a system. 

Boundary value issues are often used to express difficulties linking the wave calculation, 

such as the identification of normal nodes. Problems involving boundary values are quite 

similar to those involving starting values. There are no conditions provided at the extremes 

of the independent inconstant in a boundary value problem (BVP), whereas all situations 

are quantified in an IVP at the same value of the variable in the equation. Both an initial 

value and a boundary value issue must be well-posed before they can be used in practical 

applications. First-order hyperbolic partial differential equations are well-documented. The 

numerical estimate approaches for original value and IVP issues have seen a great deal of 

development.  
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The steadiness of finite variance schemes aimed at first instruction hyperbolic initial-

boundary value difficulties with vector morals functions in L2(IR+, IRN) was examined by 

Gottlieb (1987), and Coulombel (2009). Discrete approximations to the initial-boundary 

value issue were investigated in 1988 by Warming and Beam. 

𝑈𝑡 = 𝑎𝑈𝑥 , 0 ≤ 𝑥 ≤ 𝐴, 𝑡 ≥ 0, 

U(x,0) = u(x), 0≤ 𝑥 ≤ 𝐴, 

U(A,t) = v(t), ≥ 0,  (1) 

The steadiness of finite variance schemes aimed at first order hyperbolic IVP with vector 

standards functions in L
2
(IR+, IRN) was examined by Gottlieb et al (1987). Discrete 

approximations to the initial-boundary value issue were investigated in 1988 by Warming 

and Beam. 

𝑢𝑡 + 𝑎𝑢𝑥 = 0, 𝑥 ∈ 𝑅, 𝑡 ∈ 𝑅+ 

u(x,0) = 𝑢0 0 ,  x∈ 𝑅 (2) 

For limited discontinuous starting functions u0, for the development of numerical schemes 

for the beginning and boundary value issue, these research were motivated in which the 

initial 

𝑢𝑡 = 𝑎(𝑥)𝑢𝑥(𝑥) = 0, 𝑥 ∈ 𝑅+, 𝑡 ∈ 𝑅+ 

u(x,0) = 𝑢 𝑥 ,  x∈ 𝑅+ (3) 

condition is defined as some given function with the initial condition being defined as a(x) 

> 0 for all values of x∈ 𝑅+. When waves travel in a homogeneous medium, Equation (3) 

serves as the model.  

The Initial-Boundary Value Issue (IBVP) is the name given to the second model problem. 

𝑈𝑡 = −𝑎𝑈𝑥 , 𝑥 ∈  0,1 , 𝑡 ∈ 𝑅+ 

𝑈 𝑥, 0 = 𝑢 𝑥 , 𝑥 ∈  0,1 , 

𝑈 0, 𝑡 = 𝑣 𝑡 , 𝑡 ∈ 𝑅+  (4) 

Shoulder that a > 0 and that a boundary situationv(t) is provided when x = 0 in this 

scenario. Information travels since left to right, thus u∈C[0, 1] and v∈C[0, C], which meet 

the compatibility criterion of u(0) = v. (0). 
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When solving IVP (3) and IBVP (4), semigroup theory was employed extensively. The 

initial-boundary value issues may now be solved in an elegant way thanks to semi group 

theory. 

Theorem: Let X be a Banach space with a norm of   . X For example, shoulder that 

D(A) is dense in X, a linear map, A: D(A) →X is the range of A: A: A: A: A: A: A: A: 

Think of the Banach spaces Xn as being Banach spaces with norms that are less than or 

equal to one. In addition, there are bounded linear operators that are Pn: XXn and En:Xn: Xn 

i.  𝑃𝑛 ≤C1,  𝐸𝑛 ≤C2 , with C1 and C2 are constants sovereign of n. 

ii.  𝑃𝑛𝑥 𝑛 →  𝑥  𝑎𝑠 𝑛 → ∞ 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥 ∈ 𝑋. 

iii.  𝐸𝑛𝑃𝑛𝑥 − 𝑥 → 0 𝑎𝑠 𝑛 → ∞ 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥 ∈ 𝑋. 

iv. 𝑃𝑛𝐸𝑛 =  𝐼𝑛 , 𝑤𝑕𝑒𝑟𝑒 𝐼𝑛  𝑖𝑠 𝑡𝑕𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑜𝑛 𝑋𝑛 . 

Let  F (τn)  be  a  sequence  of  bounded  linear  operators  sinceXn  into  Xnsustaining 

 𝐹(𝜏𝑛)𝑘 ≤ 1 (5) 

Besides, the bounded linear maps 

lim𝑛→∞ 𝐸𝑛𝐴𝑛𝑃𝑛𝑥 = 𝐴𝑥 (6) 

Moreover, if knτn → t as n → ∞, then 

lim𝑛→∞ 𝐹(𝜏𝑛)𝑘𝑛 𝑃𝑛𝑥 − 𝑃𝑛𝑆 𝑡 𝑥 𝑛 = 0 (7) 

In the sequel, the term explanation refers to a comprehensive solution in anfitting sense 

For0,1,...,k,notationiiisused.  

For x∈ 𝑅,  𝑥 = sup⁡{𝑛 ∈ 𝑍: 𝑛 ≤ 𝑥} 

Exact Solution for the IVP 

It is well identified that the explanation to (3.3) is specified by 

u(x, t) = u(𝛽−1(𝑡 + 𝛽(𝑥)) 

where𝛽 𝑥 =   
𝑑𝜉

𝑎(𝜉)

𝑥

0
 

On a bounded domain, the goal was to numerically solve (3) using the non-bounded 

solution u(x, t) of (3), which stood not automatically constrained. This conclusion is made 

possible by the following theorem. 

Theorem:Assume that a ∈C[0, ∞) and a(x) > 0 aimed at all x ∈ IR
+
. Let M > 0 and T > 0. 

OutlineaM : [0, M ] → IR
+
 as 
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aM(x) =a(x), 0≤ 𝑥 ≤ 𝑀 −
1

𝑀
 

           =a(M-1/M) 𝑀(𝑀 − 𝑥), 𝑀 − 1/𝑀 ≤ 𝑥 ≤ 𝑀 

and let f ∈ C[0, M]. The explanation to the problem 

𝜕𝑉

𝜕𝑡
= 𝑎𝑀 𝑥 

𝜕𝑉

𝜕𝑥
, 0 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝑥 ≤ 𝑀 

V(x,0) = f(x), 0≤ 𝑥 ≤ 𝑀, 

V(M,t) = f(M) (8) 

subsists, unique and is specified by 

V(x,t) = f(𝛽𝑀
−1[𝑀𝑖𝑛 𝑡 + 𝛽𝑀 𝑥 , 𝛽𝑀 𝑀  ], where 

𝛽𝑀 𝑥 =   
𝑑𝜉

𝑎 𝜉 

𝑥

0

, 0 ≤ 𝑥 ≤ 𝑀 −
1

𝑀
, 

            =  
𝑑𝜉

𝑎𝜉
+  

𝑑𝜉

𝛼(𝑀−
1

𝑀
) 𝑀(𝑀−𝑥)

𝑥

𝑀−1/𝑀
, 𝑀 −

1

𝑀
≤ 𝑥 ≤ 𝑀

𝑀−1/𝑀

0
 

Further, 

𝑆𝑡𝑓 𝑥 =f(𝛽𝑀
−1[𝑀𝑖𝑛 𝑡 + 𝛽𝑀 𝑥 , 𝛽𝑀 𝑀   

defines a reductionsemi group on C[0, M] whose creator is agreed by 

D(A) = [g∈ 𝐶 0, 𝑀 : 𝑔′ ∈ 𝐶 0, 𝑀 𝑎𝑛𝑑 lim𝑥→𝑀 𝑎𝑀(𝑥)𝑔′𝑥) = 0} 

And 

Ag(x) =𝑎𝑀(𝑥)𝑔′𝑥 

Ag(M) = 0 

Further, indicating M > N s.t. 

𝑠𝑢𝑝𝑡∈ 0,𝑇 ,𝑥∈[0,𝑁] 𝑡 + 𝛽 𝑥  < 𝑏  𝑀 −
1

𝑀
 , 

V(x,t) = u(x,t), (x,t)∈  0, 𝑁 ∗ [0, 𝑇] (9) 
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if f ∈ C[0, M] is the constraint of u to [0, M]. 

Proof: Outline for t ≥ 0, Tt : [0, M] → [0, M] as 

Stf(x) = 𝛽𝑀
−1[𝑀𝑖𝑛 𝑡 + 𝛽𝑀 𝑥 , 𝛽𝑀 𝑀   

Ts*Ttx = 𝛽𝑀
−1[𝑀𝑖𝑛 𝑠 + 𝛽𝑀 𝑇𝑡𝑥 , 𝛽𝑀 𝑀   

            = 𝛽𝑀
−1[𝑀𝑖𝑛 𝑠 + 𝛽𝑀 𝐵𝑀

−1[𝑀𝑖𝑛(𝑡 + 𝛽𝑀(𝑥) , 𝛽𝑀 𝑀 ] , 𝛽𝑀 𝑀 )] 

            =𝛽𝑀
−1[𝑀𝑖𝑛 𝑠 + 𝑡 + 𝛽𝑀 𝑥 , 𝛽𝑀 𝑀  ] 

            =Ts+tx 

Also, it is relaxed to approximately that St is a semigroup, subsequentlyStf(x) = f(Ttx). It is 

recognizable that kStfk ≤ kfk and henceforth St is a shrinkage semigroup.  Nowadays, by 

Hille-Yosida, if B is the originator of St then 

(𝐼 − 𝐵)−1𝑕 𝑥 =  𝑒−𝑡𝑆𝑡𝑕 𝑥 𝑑𝑡
∞

0

 

                          =  𝑒𝛽𝑀 (𝑥)−𝛽𝑀 (𝑦) 𝑕(𝑦)

𝑎𝑀 (𝑦)
𝑑𝑦 + 𝑕(𝑁)𝑒𝛽𝑀 (𝑥)−𝛽𝑀 (𝑦)𝑀

𝑥
 

Where y = 𝛽𝑀
−1(𝑡 + 𝛽𝑀 𝑥 ) 

Now, consider the differential equation 

f(x) -𝑎𝑀 𝑥 𝑓 ′ 𝑥 = 𝑕 𝑥 , 𝑥 ∈  0, 𝑀 , 

f(M) = h(M) 

which is comparable to 

f(x) - a(x)𝑓 ′ 𝑥 = 𝑕 𝑥 , 𝑥 ∈  0, 𝑀 , 

lim
𝑥→𝑀

a(x)𝑓 ′ 𝑥 = 0 

On behalf of every h ∈ X, there is a unique explanation f ∈D(A) to the upstairs differential 

equation which is specified by 

f(x) =  𝑒𝛽𝑀 (𝑥)−𝛽𝑀 (𝑦) 𝑕(𝑦)

𝑎𝑀 (𝑦)
𝑑𝑦 + 𝑕(𝑁)𝑒𝛽𝑀 (𝑥)−𝛽𝑀 (𝑦)𝑀

𝑥
 

Later it can be revealedaimed at the operators A and B, (I − A) 
−1

 = (I − B) 
−1

 .Since this, 

one can certainly conclude that D(A) = D(B) and aimed at all g ∈ D(A), Bg = Ag.  

As β is a strictly aggregate function thru (9), for t∈ [0, T] plus x ∈ [0, N] then 

x≤ 𝛽−1 𝑡 + 𝛽 𝑥  < 𝑀 − 1/𝑀 

Hence 

𝛽𝛽−1 𝑡 + 𝛽 𝑥  = 𝛽𝑀𝛽𝑀
−1(𝑡 + 𝛽𝑀 𝑥 ) 
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Since this, it is determined that Stf(x) = V (x, t) = u(x, t) on behalf of all x ∈ [0, N] and t ∈ 

[0, T]. 

2. Convergent Numerical Scheme for the IVP and Initial-boundary Value 

Problem 

First and boundary value convergent numerical schemes are explained in this section. It is 

possible to solve the initial value issue by posing it on a smaller bounding box, and then 

solving it on a larger bounding box with the same answer. The numerical explanation to 

the modified problematic converges to the explanation of the original issue in the smaller 

constrained region. The discrete semigroup approximations for the initial-boundary value 

issue may be presented by splitting it into two separate difficulties, every of which yields a 

semigroup. 

A Convergent Numerical Scheme for the IVP 

Using the IVP (3), one may get M > N and an IVP posed on [0, M] [0, T] whose 

explanation precisely matches the explanation of (3) on [0, T]. On [0, M] [0, T], one builds 

a finite variance scheme that converges to the explanation of the issue given in (3.3) on [0, 

N] [0, T]. 

This is made possible by the following theorem. 

Theorem: Let, X is C[0, M] and A is the same as in Assume Xn = R
n+1

, where n is the 

number of items in Xn. The supremum norm is used to standardise the spaces X and Xn. 

We'll get to it in a moment, 

Pn : X → Xn as (Pnf )i = f (iM/n), i = 0, 1, . . . , n.  

En :Xn → X as 

En(α) is the piecewise linear function by En(α)(iM/n) = αi.  

Let 

𝜏𝑛 =
1

2𝑛𝑠𝑢𝑝𝑥∈[0,𝑀] 𝑎(𝑥) 
 

Define an operator F(τn) : Xn → Xn as 
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(F(𝜏𝑛 )𝛼)𝑖 =  1 − 𝑛𝜏𝑛𝑎𝑀  
𝑖𝑀

𝑛
  𝛼𝑖 + 𝑛𝜏𝑛𝑎𝑀  

𝑖𝑀

𝑛
 𝛼𝑖+1, 𝑖 = 0,1, … , 𝑛 − 1 

                = 𝛼𝑛 , 𝑖 = 𝑛 

Selectingkn = t/tn, it can be shown that 

 𝐹( 𝜏𝑛 
𝑘𝑛 𝑃𝑛𝑓 − 𝑃𝑛𝑆 𝑡 𝑓 𝑛 → 0 𝑎𝑠 𝑛 → ∞ 

 In specific, protective t ∈ [0, T ] and x ∈ [0, N ], 

lim
𝑛→∞

𝐹(𝜏𝑛)𝑘𝑛 𝑃𝑛𝑓   
𝑛𝑥

𝑀
  = 𝑢(𝑥, 𝑡) 

where u(x, t) is the explanation to (3.3). 

A Convergent Numerical Scheme for the IBVP 

The theory of semigroups cannot be directly applied to an initial-boundary value issue. 

There are discrete semigroups that can approach this semigroup, however it can be broken 

down into two difficulties. 

This conclusion is made possible by the following theorem. 

Theorem. Let X and Y stand as in above Theorem. Take Xn = R
n
 and Yn = R

n+1
. Outline 

the subsequent quantities 

𝜏𝑛 =  
1

𝑛 2𝑎 + 1 ,
 

𝑘𝑛 = [𝑛𝑡 2𝑎 + 1 , 

b = 1/a 

ɳ𝑛 =  
1

𝑛 2𝑏 + 1 ,
 

And  

𝜉𝑛 = [𝑛𝑥 2𝑏 + 1 , 
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Further,  define  Pn  :  X  → Xn  as  [Pnf ]i  =  f (i/n),   i  =  1, . . . , n  and En : Xn → X as 

En(α) existence the piece-wise linear utility with (En(α))(0) = 0 and (En(α)(i/n) = αi, i = 1, 2, 

. . . , n and the operator 

F (τn) :Xn → Xn 

As 

(F(𝜏𝑛)𝛼𝑖 =  1 −
𝑎

[2𝑎+1]
 𝛼𝑖 +

𝑎

[2𝑎+1]
𝛼𝑖−1, 𝑖 = 2,3, … . ,4 

                =  1 −
𝑎

[2𝑎+1]
 𝛼𝑖 , 𝑖 = 1 

Besides, take Qn : Y → Yn as  

[Qnf]l= f(lT/n), l = 0, 1, . . . , n  

andHn : Yn → Y as  

Hn(α) actuality the piece-wise linear function through (Hn(α)(lT/n) = αl , l = 0, 1, 2, . . . , n.  

Outline an operator 

G(ɳ𝑛 ):𝑌𝑛 → 𝑌𝑛  

(G(ɳ𝑛)𝛼)𝑙 =  1 −
𝑎

[2𝑏+1]
 𝛼𝑙 +

𝑎

[2𝑏+1]
𝛼𝑙−1 , 𝑙 = 2,3, … . ,4 

                = 𝛼0, 𝑙 = 0 

Then for the initial value problem (4), 

log𝑛→∞(𝐹 𝜏𝑛 
𝑘𝑛 )𝑃𝑛𝑢0)( 𝑛𝑥 ) +  𝐺 ɳ𝑛 

𝜉𝑛𝑄𝑛𝑣   
𝑛𝑡

𝑇
  = 𝑈(𝑥, 𝑡) 

for fixed x and t. 

3. Conclusion:  

The start and IVP issue for first-order PDEs in unrestrained domains was addressed in this 

paper. Exact solutions for beginning and IVP were sought in the first half of this study, 

while the second part of this study was focused on the convergence of numerical schemes 

for IVPs and IBVPs.Finally, the research team presented the following methods for solving 

infinite-delay differential equations. An infinite-delay neutral delay differential equation 
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has been solved numerically and its asymptotic stability has been explored in the first 

phase. PDEs with infinite delay were semi-discretized and discrete semigroup 

approximation for first order PDEs in unrestrained domains were produced in the second 

phase of the study programmer. 

 

References: 

 Karapetyants, A., Samko, S. Variable order fractional integrals in variable generalized 

Hölder spaces of holomorphic functions. Anal.Math.Phys. 11, 156 (2021). 

https://doi.org/10.1007/s13324-021-00587-0 

 B. Despres, Uniform asymptotic stability of Strang’s explicit compact schemes for 

linear advection, SIAM J. Numer. Anal. 47(5) (2009), 3956-3976. 

 Condon, M., Deano, A., Iserles, A. and Kropielnicka, K. “Efficient computation of 

delay differential equations with highly oscillatory terms”, Math. Model. Numer. Anal., 

Vol. 46, No. 6, pp. 1407–1420, 2012. 

 Gokdogan, A., Merdan, M. and Yildirim, A. “Differential transformation method for 

solving a neutral functional-differential equation with proportional delays”, Caspian J. 

Math. Sci., Vol. 1, No. 1, pp. 31–37, 2012. 

 D. Gottlieb, L. Lustman and E. Tadmor, Stability analysis of spectral methods for 

hyperbolic initial-boundary value systems, SIAM J. Numer. Anal. 24 (1987), 241-256. 

 J. F. Coulombel, Stability of finite difference schemes for hyperbolic initial boundary 

value problems, SIAM J. Numer. Anal. 47 (2009), 2844-2871. 

 G. Hedstrom, Models of difference schemes for ut ux 0 by partial differential 

equations, Math. Comp. 29 (1975), 969-977. 

 Cristiano Calcagno, Dino Distefano, Jer´ emyDubreil, Dominik Gabi, Pieter 

Hooimeijer, Mar- ´ tino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Purbrick, 

and Dulma Rodriguez, Moving fast with software verification, Proceedings of 9th 

NASA Formal Methods Symposium, Springer, 2015, pp. 3–11. 

 Alasdair Armstrong, Victor B. F. Gomes, and Georg Struth, Building program 

construction and verification tools from algebraic principles, Formal Aspects of 

Computing 28 (2016), no. 2, 265– 293. 

 A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential 

Equations, Springer-Verlag, New York, 1983. 



 ISSN: 2320-0294Impact Factor: 6.765  

131 International Journal of Engineering, Science and Mathematics 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

 Strand Bo, Numerical studies of hyperbolic IBVP with high-order finite difference 

operators satisfying a summation by parts rule, Appl. Numer. Math. 26(4) (1998), 497-

521. 

 Z. H. Teng, Error bounds between monotone difference schemes and their modified 

equations, Math. Comp. 79 (2010), 1473-1491. 

 Robin Hirsch and Brett McLean, Disjoint-union partial algebras, Logical Methods in 

Computer Science 13 (2017), no. 2:10, 1–31. 

 Robin Hirsch, Marcel Jackson, and SzabolcsMikulas, ´ The algebra of functions with 

antidomain and range, Journal of Pure and Applied Algebra 220 (2016), no. 6, 2214–

2239. 

 R. F. Warming and R. M. Beam, Stability of semi discrete approximations for 

hyperbolic initial-boundary value problems: Stationary modes, Reprint Second 

International Conference on Hyperbolic Problems, Aachen, Fed. Rep. of Germany, 

1988. 

 H. Sekino and S. Hamada, Solution of advection equation using wavelet basis sets, 

Proceedings of the 2008 International Conference on Wavelet Analysis and Pattern 

Recognition, Hong Kong, 2008, pp. 30-31. 

 Brett McLean, Algebras of multiplace functions for signatures containing antidomain, 

Algebra Universalis 78 (2017), no. 2, 215–248. 

 Brett McLean, Complete representation by partial functions for composition, 

intersection and antidomain, Journal of Logic and Computation 27 (2017), no. 4, 1143–

1156. 

 

 


