International Journal of Engineering, Science and Mathematics

Vol. 11 Issue 12, December 2022, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

The study of customer behavior on non serial queues attached with multiple parallel serial queues

Meenu Gupta, Asstt. Prof., Dr. B.R.Ambedkar Government College, Kaithal(136027) Haryana– India DOI:ijmra.ijesm.22897.22765

ABSTRACT:

This paper considers the most appropriate & more general queuing model in respect of customers which are allowed to leave the system at any stage with or without getting service. The paper considers the steady-state behavior of the queuing processes when M service channels in series, are linked with N non-serial channels having balking & reneging phenomenon, wherein:

- Each of M service channels has identical multiple parallel channels.
- Poisson arrivals & exponential service times are followed.
- The service discipline follows SIRO rule (service in random order) instead of FIFO rule (first in first out).
- The customer becomes impatient in the queue after sometime and may leave the system without service.
- Customer behavior ,Balking and reneging is allowed only on N non serial servers.
- Waiting space is infinite.

Key Words: Poisson stream, Reneging, Balking, Traffic intensity.

INTRODUCTION:

The solutions of serial and non-serial queuing processes with reneging and balking phenomenon have been studied by [4]. The steady-state solution of serial and non-serial queuing processes with reneging and balking due to long queue and some urgent message and feedback phenomenon is obtained by [3]. In our present society, the impatient customers generate the most appropriate and modern models in the queuing theory. Incorporating this concept, we study the steady-state analysis of general queuing system in the sense that:

- M service channels in series are linked with N non serial channels having reneging and balking phenomenon where each of M service channels has identical multiple parallel channels.
- The input process is Poisson and the service time distribution is exponential.
- The service discipline follows SIRO-rule(service in random order) instead of FIFO-rule (first in first out)
- The customer becomes impatient in queue after sometime and may leave the system without getting service.
- The input process depends upon the queue size in non serial channels.
- Customer behavior ,Balking and reneging is allowed only on N non serial servers.
- Waiting space is infinite.

FORMULATION OF MODEL:

The system consists of Q_i (i=1,2,...M) service phases where each service phase Q_i has c_i (i=1,2,...M) identical parallel service facilities and Q_{1j} channels (j=1,2,...N) with respective servers S_i (i=1,2,...M) and S_{1j} (j=1,2,...N). Customers demanding different types of service arrive from outside the system in Poisson distribution with parameters λ_i (i=1,2,...M) at Q_i service phase and λ_{1j} (j=1,2,...N) at Q_{1j} service phase respectively. But the sight of long queue at Q_{1j} , may discourage the fresh customers from joining it and may decide not to enter the service channel Q_{1j} (j=1,2,...N)then the Poisson input rate λ

{1j}would be $\frac{\lambda{1j}}{m_j+1}$ where m_j is the queue size of Q_{1j}. Further, the impatient customers

joining any service channel Q_{1j} may leave the queue without getting service after a wait of certain time. The service time distribution for the server $S_i(i=1,2,\ldots,M)$ and S_{1j} $(j=1,2,\ldots,N)$ are mutually independent negative exponential distribution with $\mu_i(i=1,2,\ldots,M)$ and $\mu_{1j}(j=1,2,\ldots,N)$ respectively. After the completion of service at Q_i $(i=1,2,\ldots,M)$, the customers either leave the system with probability p_i or join the next phase with probability q_i such that $p_i+q_i=1$ $(i=1,2,\ldots,M-1)$. After completion of service at Q_M , the customers either leave the system with probability p_M or join any of the

$$Q_{1j}(j=1,2,...,N)$$
 with probability $\frac{q_{Mj}}{m_j+1}(j=1,2,...,N)$ such that $p_M + \sum_{j=1}^N \frac{q_{Mj}}{m_j+1} = 1$.

If the customers are more than c_i in the Q_i service phase ,all the c_i servers will remain busy and each is putting out the service at mean rate μ_i and thus the mean service rate at Q_i is $c_i \mu_i$, on the other hand if the number of customers is less than c_i in the Q_i service phase ,only n_i out of the c_i servers will be busy and thus the mean service rate at Q_i is $n_i \mu_i$ (i=1,2,.....M).It is assumed that the service commences instantaneously when the customer arrives at an empty service channel.

FORMULATION OF EQUATIONS:

Define $P(n_1,n_2,\dots,n_M; m_1,m_2,m_3,\dots,m_N;t)$ as the probability that at time 't', there are n_i customers (which may renege or after being serviced by the Q_i phase either leave the system or join the next service phase) waiting in the Q_i service phase (i=1,2,...,M), m_j customers (which may balk or renege or after being serviced leave the system) waiting before the servers $S_{1j}(j=1,2,\dots,N)$.

We define the operators Ti_. And T.ito act upon the vector $\tilde{n} = (n_1, n_2, \dots, n_M)$ and T_i and T_{.j} and T_{.j}, j+1 to act upon the vector $\tilde{m} = (m_1, m_2, \dots, m_N)$ as follows:

$$\begin{split} T_{i.}\left(\,\tilde{n}\,\,\right) &= (n_{1,}n_{2,}......n_{i}\text{-}1\dots n_{M}) \\ T_{\cdot i}(\,\tilde{n}\,\,) &= (n_{1,}n_{2,}......n_{i}\text{+}1\dots n_{M}) \\ T_{\cdot j,\,\,j+1.}\left(\,\tilde{m}\,\,\right) &= (m_{1,}m_{2,}......,m_{j}\,\text{+}1,m_{j+1.}\,\text{-}1\dots m_{N}\,\,) \\ T_{j.}\left(\,\tilde{m}\,\,\right) &= (m_{1,}m_{2,}.......m_{j}\text{-}1\dots m_{N}) \\ T_{\cdot j}(\,\tilde{m}\,\,) &= (m_{1,}m_{2,}......m_{j}\text{+}1\dots m_{N}) \end{split}$$

Following the procedure given by [4], we write difference differential equations as:

$$\frac{dP(\tilde{n},\tilde{m};t)}{dt} = -\begin{bmatrix} \sum_{i=1}^{M} \lambda_{i} + \sum_{j=1}^{N} \frac{\lambda_{1_{j}}}{m_{j}+1} + \sum_{i=1}^{M} \delta(n_{i})(\mu_{in_{i}} + \delta_{n_{i}-c_{i}}r_{in_{i}}) \\ + \sum_{j=1}^{N} \delta(m_{j})\{(\mu_{1_{j}}) + R_{jm_{j}}\} \end{bmatrix} P(\tilde{n},\tilde{m};t) \\ + \sum_{i=1}^{M} \lambda_{i}P(T_{i.}(\tilde{n}),\tilde{m};t) + \sum_{j=1}^{N} \frac{\lambda_{1_{j}}}{m_{j}}P(\tilde{n};T_{j.}(\tilde{m});t) \\ + \sum_{i=1}^{M} \delta_{n_{i}-c_{i}}(r_{n_{i,i}})P(T_{i.}(\tilde{n}),\tilde{m};t) + \sum_{j=1}^{N} \mu_{i}\mu_{in_{i,j}}P(T_{i.i+1.}(\tilde{n}),\tilde{m};t) + \\ \sum_{i=1}^{M} p_{i}\mu_{in_{i,i}}P(T_{i.}(\tilde{n}),\tilde{m};t) + \sum_{j=1}^{N} \mu_{Mn_{M}+1} \frac{q_{Mj}}{m_{j}}P(n_{1},n_{2},....n_{M}+1,T_{j.}(\tilde{m});t) \\ + \sum_{i=1}^{N} (\mu_{1_{j}} + R_{jm_{j}+1})P(\tilde{n};T_{j.}(\tilde{m});t) \\ + \sum_{j=1}^{N} (\mu_{1_{j}} + R_{jm_{j}+1})P(\tilde{n};T_{j.}(\tilde{m});t) \\ \text{for } n_{i} \geq 0 \text{, } m_{j} \geq 0 \text{, } (i=1,2,...M) \text{, } (j=1,2,...N) \text{.} \\ \text{Where} \\ \delta(x) = \begin{bmatrix} 1 & when & x \neq 0 \\ 0 & when & x = 0 \end{bmatrix} \\ \delta(n_{i}) = \begin{bmatrix} 0 & when & n_{i} = 0 \\ 1 & when & n_{i} \neq 0 \end{bmatrix} \\ \delta_{(n-c)} = \begin{bmatrix} 0 & when & n_{i} = 0 \\ 1 & when & n \geq c \end{bmatrix} \\ \mu_{in_{i}} = \begin{bmatrix} n_{i}\mu_{i} & when & 1 \leq n_{i} < c_{i} \\ c_{i}\mu_{i} & when & n_{i} \geq c_{i} \end{bmatrix} \\ r_{in_{i}} = \mu_{i}e^{\frac{-\mu_{i}T_{0,j}}{n_{j}}} \\ (1 - e^{\frac{\mu_{i}T_{0,j}}{n_{j}}}) \\ \vdots i = 1, 2,M \\ R_{jm_{j}} = \frac{\mu_{1,j}e^{\frac{-\mu_{i}T_{0,j}}{m_{j}}}}{\frac{\mu_{i}T_{0,j}}{m_{j}}}$$

Where r_{in_i} and R_{jm_j} are the average rates at which the customers renege after a wait of certain time T_{0i} and T_{0j} whenever there are n_i and m_j customers in the Q_i and Q_{1j} service phases respectively and $P(\tilde{m}, \tilde{n}; t) = 0$ if any of the arguments is negative

Steady-State Equations:

We write the steady-state equations of the queuing model by equating the time derivative to zero in the equation (1)

$$\left[\sum_{i=1}^{M} \lambda_{i} + \sum_{j=1}^{N} \frac{\lambda_{1j}}{m_{j} + 1} + \sum_{i=1}^{M} \delta(n_{i})(\mu_{in_{i}} + \delta_{n_{i} - c_{i}} r_{in_{i}}) + \sum_{j=1}^{N} \delta(m_{j}) \{(\mu_{1j}) + R_{jm_{j}}\}\right] P(\tilde{n}, \tilde{m})
= \sum_{i=1}^{M} \lambda_{i} P(T_{i} \cdot (\tilde{n}), \tilde{m})) + \sum_{j=1}^{N} \frac{\lambda_{1j}}{m_{j}} P(\tilde{n}; T_{j} \cdot (\tilde{m}))
+ \sum_{i=1}^{M} \delta_{n_{i} - c_{i}} (r_{in_{i+1}}) P(T_{i} \cdot (\tilde{n}), \tilde{m}) + \sum_{i=1}^{M-1} q_{i} \mu_{in_{i+1}} P(T_{i} \cdot i + 1 \cdot (\tilde{n}), \tilde{m})
+ \sum_{i=1}^{M} p_{i} \mu_{in_{i+1}} P(T_{i} \cdot (\tilde{n}), \tilde{m}) + \sum_{j=1}^{N} \mu_{Mn_{M} + 1} \frac{q_{Mj}}{m_{j}} P(n_{1}, n_{2}, \dots, n_{M} + 1, T_{j} \cdot (\tilde{m}))
+ \sum_{j=1}^{N} (\mu_{1j} + R_{jm_{j} + 1}) P(\tilde{n}; T_{i} \cdot (\tilde{m}))
\text{for } n_{i} \ge 0 \text{ , } m_{j} \ge 0 \text{ ; } (i = 1, 2, \dots, M) \text{ ; } (j = 1, 2, \dots, N)$$

Case I:- When $n_i < c_i$:

For $n_i < c_i$, then the resulting equations (2) reduce to as under:

$$\left[\sum_{i=1}^{M} \lambda_{i} + \sum_{j=1}^{N} \frac{\lambda_{1j}}{m_{j} + 1} + \sum_{i=1}^{M} \delta(n_{i})(n_{i}\mu_{i}) + \sum_{j=1}^{N} \delta(m_{j})\{(\mu_{1j}) + R_{jm_{j}}\}\right] P(\tilde{n}, \tilde{m})$$

$$= \sum_{i=1}^{M} \lambda_{i} P(T_{i.}(\tilde{n}), \tilde{m}) + \sum_{j=1}^{N} \frac{\lambda_{1j}}{m_{j}} P(\tilde{n}; T_{j.}(\tilde{m}))$$

$$+ \sum_{i=1}^{M-1} q_{i}\mu_{i}(n_{i} + 1) P(T_{ii+1.}(\tilde{n}), \tilde{m})$$

$$+ \sum_{i=1}^{M} p_{i}\mu_{i}(n_{i} + 1) P(T_{i}(\tilde{n}), \tilde{m}) + \sum_{j=1}^{N} \mu_{M}(n_{M} + 1) \frac{q_{Mj}}{m_{j}} P(n_{1}, n_{2}, \dots, n_{M} + 1, T_{j.}(\tilde{m}))$$

$$+ \sum_{i=1}^{N} (\mu_{1j} + R_{jm_{j}+1}) P(\tilde{n}; T_{.j}(\tilde{m}))$$
(3)

The solutions of the steady state equations (3) can be verified to be:

$$P(\tilde{n}, \tilde{m}) = P(\tilde{0}, \tilde{0}) \left[\left(\frac{1}{|n_{1}|} \right) \left(\frac{\lambda_{1}}{\mu_{1}} \right)^{n_{1}} \right] \left[\left(\frac{1}{|n_{2}|} \right) \left(\frac{\lambda_{2} + q_{1}\alpha_{1}}{\mu_{2}} \right)^{n_{2}} \right] \left[\left(\frac{1}{|n_{3}|} \right) \left(\frac{\lambda_{3} + q_{2}\alpha_{2}}{\mu_{3}} \right)^{n_{3}} \right]$$

$$\dots \left[\left(\frac{1}{|n_{M}|} \right) \left(\frac{\lambda_{M} + q_{M-1}\alpha_{M-1}}{\mu_{M}} \right)^{n_{M}} \right] \left[\left(\frac{1}{|m_{1}|} \right) \left(\frac{(\lambda_{11} + \mu_{M}q_{M1}\rho_{M})^{m_{1}}}{\prod_{j=1}^{m_{1}} (\mu_{11} + R_{1j})} \right) \right]$$

$$\left[\left(\frac{1}{|m_{2}|} \right) \left(\frac{(\lambda_{12} + \mu_{M}q_{M2}\rho_{M})^{m_{2}}}{\prod_{j=1}^{m_{2}} (\mu_{12} + R_{2j})} \right) \right] \dots \left[\left(\frac{1}{|m_{N}|} \right) \left(\frac{(\lambda_{1N} + \mu_{M}q_{MN}\rho_{M})^{m_{N}}}{\prod_{j=1}^{m_{N}} (\mu_{1M} + R_{Mj})} \right) \right] \dots (4)$$

for $n_i\!\geq\!0$, $mj\geq\!0$; (i = 1,2,...,M) ; (j= 1,2,...,N) . where

$$\begin{split} \rho_M &= \frac{\lambda_M + q_{M-1} \alpha_{M-1}^{'}}{\mu_M} \\ \alpha_1^{'} &= \lambda_1 \\ \alpha_k^{'} &= \lambda_k + q_{k-1} \alpha_{k-1}^{'} \quad k = 2, 3, \dots, M-1 \end{split}$$

We obtain $P(\tilde{0}, \tilde{0})$ from the normalizing condition $\sum_{\tilde{m}=\tilde{0}}^{\infty} \sum_{\tilde{n}=\tilde{0}}^{\infty} P(\tilde{n}, \tilde{m}) = 1$ and with the restrictions that traffic intensity of each service channel of the system is less than unity. **Case II:**— **When n**_i \geq **c**_i

for $n_i \ge c_i$, then the resulting equations (2) will reduce to as under:

The solutions of the steady state equations can be verified to be:

$$P(\tilde{n}, \tilde{m}) = P(\tilde{0}, \tilde{0}) \left[\frac{(\lambda_{1})^{n_{1}}}{\prod_{i=1}^{m} (c_{1}\mu_{1} + r_{1i})} \right] \left[\frac{\{\lambda_{2}(c_{1}\mu_{1} + r_{1n_{1}+1}) + c_{1}q_{1}\mu_{1}\alpha_{1}\}^{n_{2}}}{\prod_{i=1}^{n} (c_{1}\mu_{1} + r_{1i})} \right] \left[\frac{\{\lambda_{2}(c_{1}\mu_{1} + r_{1n_{1}+1}) + c_{1}q_{1}\mu_{1}\alpha_{1}\}^{n_{2}}}{\prod_{i=1}^{n} (c_{1}\mu_{1} + r_{in_{1}+1}) + c_{2}q_{2}\mu_{2}\alpha_{2}\}^{n_{3}}} \right] \left[\frac{\{\lambda_{3}\prod_{i=1}^{2} (c_{i}\mu_{i} + r_{in_{1}+1}) + c_{2}q_{2}\mu_{2}\alpha_{2}\}^{n_{3}}}{\prod_{i=1}^{m} (c_{3}\mu_{i} + r_{in_{1}+1}) + c_{M-1}q_{M-1}\mu_{M-1}\alpha_{M-1}\}^{n_{M}}} \right] \left[\frac{(\lambda_{11} + \mu_{M}c_{M}\rho_{M}q_{M})^{m_{1}}}{\prod_{i=1}^{m} (c_{i}\mu_{i} + r_{in_{1}+1})} \right] \left[\frac{(\lambda_{11} + \mu_{M}c_{M}\rho_{M}q_{M})^{m_{1}}}{\prod_{i=1}^{m} (\mu_{11} + R_{1j})} \right] \right] \left[\frac{(\lambda_{12} + \mu_{M}c_{M}\rho_{M}q_{M})^{m_{1}}}{\prod_{j=1}^{m} (\mu_{11} + R_{1j})} \right]$$

$$Where
$$\rho_{M} = \frac{\lambda_{M}\prod_{i=1}^{M-1} (c_{i}\mu_{i} + r_{in_{i}+1}) + c_{M-1}\mu_{M-1}q_{M-1}\alpha_{M-1}}{(c_{M}\mu_{M} + r_{Mn_{M}+1})\prod_{i=1}^{M-1} (c_{i}\mu_{i} + r_{in_{i}+1})}$$

$$\alpha_{1} = \lambda_{1}$$

$$\alpha_{2} = \lambda_{1}\prod_{i=1}^{M-1} (c_{i}\mu_{i} + r_{in_{i}+1}) + q_{k-1}\alpha_{k-1}u_{k-1}c_{k-1}.$$

$$(6)$$$$

We obtain $P(\tilde{0}, \tilde{0})$ from the normalizing condition $\sum_{\tilde{m}=\tilde{0}}^{\infty} \sum_{\tilde{n}=\tilde{0}}^{\infty} P(\tilde{n}, \tilde{m}) = 1$ and with the restrictions that traffic intensity of each service channel of the system is less than unity Thus $P(\tilde{n}, \tilde{m})$ is completely determined.

References:

- 1. Singh, M. (1984); Steady-state behaviour of serial queuing processes with impatient customers. Math. Operations forsch, U. statist. Ser, statist. Vol. 15. No.2.289-298.
- 2. Singh, Man and Ahuja, Asha (1995): The steady state solution of multiple parallel channels in series with impatient customers. Intnl. J. Mgmt. syst. Vol. 11, No. 2.
- 3. Singh, Man, Punam and Ashok Kumar (2009): Steady-state solutions of serial and non-serial queuing processes with reneging and balking due to long queue and some urgent message and feedback .International Journal of Essential Science Vol. 2, No.2.
- **4. Vikram and Singh, Man** (1998): Steady state solution of serial and non serial queuing processes with reneging and balking phenomenon. recent advances in information theory , **statistics and computer applications,CCS Haryana Agricultural University Publication , Hisar.227-236**