International Journal of Engineering, Science and Mathematics

Vol. 12 Issue 11, November 2023, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

ON $|V, \lambda, \delta|_k$ SUMMABILITY FACTOR OF INFINITE SERIES:

Dr. Pragati Sinha

Associate Professor

Mangalmay Institute of Engineering & Technology,

Knowldege Park – II, Greater Noida Gautam Budh Nagar (U.P.) - 201308

Dr. Sanjeev Kumar Saxena

Associate Professor,

Department of Mathematics

N.M.S.N. Das (P.G.) College,

Budaun, U.P.-243601

Abstract

Here...

1.1 DEFINITIONS AND NOTATIONS:

Definition 1:

Let $\sum a_n$ be an infinite series with Partial sum s_n . By u_n^{α} we denotes the n-th Cesár means of order α , $(\alpha > -1)$ of the sequence $\{s_n\}$. Absolute summability of order k was defined for Cesár methods of order α by FLET [1], [2]. He also defined summability $|C, \alpha, \delta|_k \ge 1$, as follows,

A series is summable $|C, \alpha, \delta|_k$ if,

$$\sum_{n=1}^{\infty} n^{\delta k + k - 1} |U_n^{\alpha} - U_{n-1}^{\alpha}|^k < \infty$$
 (1.1.1)

Definition 2: The series $\sum a_n$ will said to be Summable $|V, \lambda, \delta|_k$, $k \ge 1$, if

$$\sum_{n=1}^{\infty} \lambda_n^{\delta k + k - 1} |V_{n+1}(\lambda) - V_n(\lambda)|^k < \infty$$
 (1.1.2)

for $\lambda_n = n$ it is reduces to $|C, I, \delta|_k$ and for $k = 1, \delta = 0$ it is same as $|V, \lambda|$ summability.

Definition 3: Let $\sum a_n$ is an infinite series then it is said to be stongly bounded by logarithmic means with index 1 or simply bounded $\{R, log_{2}, 1\}$, if,

$$\sum_{v=1}^{n} \frac{|S_v|}{v} = o(\log \mathbb{P}_n), \text{ as } n \to \infty$$
 (1.1.3)

for any sequence $\{\epsilon_n\}$ we write

$$\Delta \epsilon_n = \epsilon_n - \epsilon_{n+1} \Delta^2 \epsilon_n = \Delta(\Delta \epsilon_n)$$
1.2 INTRODUCTION:

Generalizing the result of PRASAD [3] for $|V, \lambda|$ Summability which is given by theorem SINHA, CHANDRA and KUMAR [4] have proved the following theorem:

Theorem: If,

$$\epsilon_m \mu_m = O(1) \text{ as } m \to \infty$$
 (1.1.1)

$$\sum_{n=1}^{\infty} \lambda_n \mu_n |\Delta^2 \epsilon_n| = O(1)$$
 (1.1.2)

and

$$\sum_{1}^{m} \frac{|t_{v}^{'}|}{\lambda_{v}} = O(\rho_{m}\mu_{m}) \text{ as } m \to \infty$$
 (1.1.3)

where

 $\mu_n = \sum_{i=1}^n \lambda_i^{-1}$ and $\{\rho_n\}$ are positive non-decreasing sequences such that:

$$\Delta_n \mu_n p_n \Delta\left(\frac{1}{\rho_n}\right) = O(1) \text{ as } n \to \infty$$
(1.2.4)

then $\sum \frac{a_n \epsilon_n}{\rho_n}$ is summable $|V, \lambda|$.

The object of this paper is to prove a more general theorem for $|V, \lambda, \delta|_k$ summability which generalized all the above theorems. However, our theorem is as follows.

1.3. Theorem: If,

$$\epsilon_m \mu_m = O(1), \text{ as } m \to \infty$$
 (1.3.1)

$$\sum_{n=1}^{m} \lambda_n \mu_n |\Delta^2 \epsilon_n| = O(1)$$
 (1.3.2)

$$\sum_{v=1}^{m} \frac{|t_v^{'}|^{\delta k+k}}{\lambda_v} = \rho_m \mu_m \tag{1.3.3}$$

$$k \geqslant 1, m \to \infty, 0 \leqslant \delta < \frac{1}{k}$$

where

 $\mu_n = \sum_{i=1}^n \lambda_i^{-1}$ and $\{\rho_n\}$ are positive non-decreasing sequences such that

$$\lambda_n \mu_n \rho_n \Delta\left(\frac{1}{P_n}\right) = O(1) \text{ as } n \to \infty$$
 (1.3.4)

then

$$\sum \frac{a_n \epsilon_n}{\rho_n} \text{ is summable } |V, \lambda, \delta|_k, k \ge 1, 0 \le \delta \le \frac{1}{k}$$

1.4 Proof of the theorem:

Let $T_n = v_{n+1}(\lambda; \epsilon_n) - v_n(\lambda; \epsilon_n)$ where $v_n(\lambda; \epsilon_n)$ is the *n*-th de - la vallée Poussin means of the series $\sum a_n \frac{\epsilon_n}{\rho_n}$

Then to prove the theorem it is sufficient to prove that:

$$\sum_{n=1}^{\infty} \lambda_n^{\delta k + k - 1} |T_n|^k < \infty$$

let Σ' be the summation over all n Satisfying $\lambda_{n+1} = \lambda_n$ and

 \sum'' be the summation over all n satisfying $\lambda_{n+1} > \lambda_n$

we have

$$T_n = \frac{1}{\lambda_n \lambda_{n+1}} \sum_{v=n-\lambda_{n+2}}^{n+1} \left[(\lambda_{n+1} - \lambda_n)^{v-n+1} + \lambda_n \right] \frac{a_v \epsilon_v}{\rho_v}$$

when $\lambda_{n+1} = \lambda_n$, then we have,

$$T_n = \frac{1}{\lambda_{n+1}} \sum_{v=n-\lambda_n+2}^{n+1} \frac{a_v \epsilon_v}{\rho_v}$$

Applying Abel's transformation, we have

$$T_n = [\Sigma_1 + \Sigma_2 - \Sigma_3]$$

where,

$$\sum_{1} = \frac{1}{\lambda_{n+1}} \sum_{v=n-\lambda_{n}+2}^{n} \Delta \left(\frac{\epsilon_{n}}{v \rho_{v}}\right) \sum_{r=0}^{v} r a_{r}$$

$$= \frac{1}{\lambda_{n+1}} \sum_{v=n-\lambda_{n}+2}^{n} \Delta \left(\frac{\epsilon_{n}}{v \rho_{v}}\right) (V+1) t'_{v}$$

$$= \frac{1}{\lambda_{n+1}} \sum_{v=n-\lambda_{n+2}}^{n} \Delta \left(\frac{\epsilon_{v}}{v \rho_{v}}\right) (V+1) t'_{v}$$

$$\sum_{2} = \frac{1}{\lambda_{n+1}} \frac{\epsilon_{n+1}}{(n+1)\rho_{n+1}} \sum_{r=0}^{n+1} r a_{r} = \frac{1}{\lambda_{n+1}} \frac{\epsilon_{n+1}}{\rho_{n+1}} t'_{n+1}$$

$$(1.4.1)$$

$$\sum_{3} = \frac{\epsilon_{n-\lambda_{n}+2}}{\lambda_{n+1}(n-\lambda_{n}+2)\rho_{n-\lambda_{n}+2}} \sum_{r=0}^{n-\lambda_{n}+1} ra_{r}$$

$$= \frac{\epsilon_{n-\lambda_{n}+2}t_{n-\lambda_{n}+1}'}{\lambda_{n+1}\rho_{n-\lambda_{n}+2}}$$

Now

Considering (1.4.1) we have

$$\sum_{1} = \sum_{11} + \sum_{12} + \sum_{13} + \sum_{14}$$

Where

$$\sum_{11} = \frac{1}{\lambda_n} \sum_{v=n-\lambda_n+2}^n \frac{\Delta \epsilon_n t_v'}{\rho_v}$$

$$\sum_{12} = \frac{1}{\lambda_n} \sum_{v=n-\lambda_n+2}^n \frac{\Delta \epsilon_v t_v'}{v \rho_v} \sum_{13} = \frac{1}{\lambda_n} \sum_{v=n-\lambda_n+2}^n \frac{\epsilon_{v+1} t_v'}{v \rho_v}$$

and

$$\sum_{14} = \frac{1}{\lambda_n} \sum_{v=n-\lambda_{n+2}}^{n} \epsilon_{v+1} t_v' \Delta\left(\frac{1}{\rho_v}\right)$$

By Minkouski.s inequility, it is therefore, sufficient to prove that

$$\sum' \lambda_n^{\delta k + k - 1} \left| \sum_{1r} \right|^k < \infty$$
, for $r = 1, 2, 3, 4$

$$\sum' \lambda_n^{\delta k + k - 1} | \sum_2 |^k < \infty$$

$$\sum' \lambda_n^{\delta k + k - 1} | \Sigma_3 |^k < \infty$$

Now

$$\sum' \quad \lambda_n^{\delta k + k - 1} \left| \sum_{11} \right|^k = \sum'_n \quad \lambda_n^{\delta k + k - 1} \left| \frac{1}{\lambda_n} \sum_{v = n - \lambda_n + 2}^n \quad \frac{\Delta \epsilon_v t_v'}{\rho_v} \right|^k$$

$$= O(1) \left[\sum' \lambda_{n}^{\delta k - 1} \left\{ \sum_{v=n-\lambda_{n}+2}^{n} \frac{|\Delta \epsilon_{v}| |t_{v}'|}{\rho_{v}} \right\}^{k} \right]$$

$$= O(1) \left[\sum' \lambda_{n}^{\delta k - 1} \left\{ \sum_{v=n-\lambda_{n}+2}^{n} \frac{|\Delta \epsilon_{v}| |t_{v}'|^{k}}{\rho_{v}} \right\} \left\{ \sum_{v=n-\lambda_{n}+2}^{n} \frac{|\Delta \epsilon_{v}|}{\rho_{v}} \right\}^{k-1} \right]$$

$$= O(1) \left[\sum' \lambda_{n}^{\delta k - 1} \sum_{v=n-\lambda_{n}+2}^{n} \frac{|\Delta \epsilon_{v}| |t_{v}'|^{k}}{\rho_{v}} \right]$$

$$= O(1) \left[\sum_{v=1}^{\infty} \frac{|t_{v}'|^{k} |\Delta \epsilon_{v}|}{\rho_{v}} \sum_{n=v}^{v+\lambda_{v}-1} \lambda_{n}^{\delta k - 1} \right]$$

$$= O(1) \left[\sum_{v=1}^{\infty} \frac{|t_{v}'|^{k} |\Delta \epsilon_{v}|}{\rho_{v}} \right]$$

Now

where

$$\sum_{11(2)}^{(1)} = \sum_{v=1}^{m-1} |\Delta^2 \epsilon_v| \lambda_v \mu_v = O(1)$$

$$\sum_{11}^{(2)} = \sum_{v=1}^{m-1} |\Delta \epsilon_{v+1}| \Delta \lambda_v \mu_v = O(1)$$

$$\sum_{11}^{(3)} = \sum_{v=1}^{m-1} |\Delta \epsilon_{v+1}| \lambda_{v+1} \Delta \left(\frac{1}{\rho_v}\right) \rho_v \mu_v = 0$$

$$\sum_{11}^{(4)} = \lambda_m |\Delta \epsilon_{m+1}| \mu_m = O(1)$$

as $m \to \infty$, by virtue of conditions $(1 \cdot 3 \cdot 1), (1 \cdot 3 \cdot 2)$ and by the hypothesis of theorem.

Hence

$$\sum' \lambda_n^{\lambda k + k - 1} \left| \sum_{11} \right|^k < \infty$$

Now consider

$$\begin{split} & \sum' \lambda_n^{\delta k + k - 1} \left| \sum_{12} \right|^k = \sum' \lambda_n^{\delta k + k - 1} \left| \frac{1}{\lambda_n} \sum_{v = n - \lambda_n + 2}^n \frac{\Delta \epsilon_n t_v'}{V \rho_v} \right|^k \\ &= O(1) \left[\sum' \lambda_n^{\delta k - 1} \left\{ \sum_{v = n - \lambda_n + 2}^n \frac{\left| \Delta \epsilon_n \right| t_v'}{V \rho_v} \right\}^k \right] \\ &= O(1) \left[\sum' \lambda_n^{\delta k - 1} \left\{ \sum_{v = n - \lambda_n + 2}^n \frac{\left| \Delta \epsilon_v \right| \left| t_v' \right|^k}{V \rho_v} \right\} \left\{ \sum_{v = n - \lambda_n + 2}^n \frac{\left| \Delta \epsilon_v \right|}{V \rho_v} \right\}^{k - 1} \right] \\ &= O(1) \left[\sum' \lambda_n^{\delta k - 1} \sum_{v = n - \lambda_n + 2}^n \frac{\left| \Delta \epsilon_v \right| \left| t_v' \right|^k}{V \rho_v} \right] \\ &= O(1) \left[\sum_{v = 1}^\infty \frac{\left| \Delta \epsilon_v \right| \left| t_v' \right|^k}{V \rho_v} \sum_{n = v}^{v + \lambda_v - 1} \lambda_n \delta_k - 1 \right] \\ &= O(1) \left[\sum_{v = 1}^\infty \frac{\left| \Delta \epsilon_v \right| \left| t_v' \right|^k}{V \rho_v} \right] \end{split}$$

Now

$$\begin{split} & \sum_{v=1}^{m} \quad \frac{|\Delta \epsilon_{v}| \lambda_{v} |t'_{v}|^{k}}{\lambda_{v} v \rho_{v}} = \sum_{v=1}^{m-1} \quad \Delta \left\{ \frac{|\Delta \epsilon_{v}| \lambda_{v}}{v \rho_{v}} \right\} \sum_{r=1}^{v} \quad \frac{|t'_{r}|^{k}}{\lambda_{r}} + \frac{|\Delta \epsilon_{m}| \lambda_{m}}{m \rho_{m}} \sum_{n=1}^{m} \quad \frac{|t'_{r}|^{k}}{\lambda_{r}} \\ & = O(1) \sum_{12}^{(1)} \quad + \sum_{12}^{(2)} \quad + \sum_{12}^{(3)} \quad + \sum_{12}^{(4)} \quad + \sum_{12}^{(5)} \end{split}$$

where

$$\Sigma_{12}^{(1)} = \Sigma_{v=1}^{m-1} \quad \frac{|\Delta^{2} \epsilon_{v}| \lambda_{v} \mu_{v}}{v} = O(1)$$

$$\Sigma_{12}^{(2)} = \Sigma_{v=1}^{m-1} \quad \frac{|\Delta \epsilon_{v+1}| \Delta \lambda_{v} \mu_{v}}{v} = O(1)$$

$$\Sigma_{12}^{(3)} = \Sigma_{v=1}^{m-1} \quad \frac{|\Delta \epsilon_{v+1}| \lambda_{v+1} \mu_{v}}{v(v+1)} = O(1)$$

$$\Sigma_{12}^{(4)} = \Sigma_{v=1}^{m-1} \quad \frac{|\Delta \epsilon_{v+1}| \lambda_{v+1}}{(v+1)} \Delta \left(\frac{1}{\rho_{v}}\right) \rho_{v} \mu_{v} = O(1)$$

and

$$\sum_{12}^{(5)} = \frac{|\Delta \epsilon_m| \lambda_m \mu_m}{m} = O(1)$$

as $m \to \infty$ by the hypothesis of the theorem

hence
$$\sum' \lambda_n^{\delta k + k - 1} |\sum_{12}|^k < \infty$$
.

Again

$$\sum' \lambda_{n}^{\delta k+k-1} \left| \sum_{13} \right|^{k} = \sum' \lambda_{n}^{k+\delta k-1} \quad \left| \frac{1}{\lambda_{n}} \sum_{v=n-\lambda_{n}+2}^{n} \frac{\epsilon_{v+1} t_{v}'}{v \rho_{n}} \right|^{k} =$$

$$O(1) \left[\sum' \lambda_{n}^{\delta k-1} \left\{ \sum_{v=n}^{n} \frac{|\epsilon_{v}| |t_{v}'|}{v \rho_{v}} \right\}^{k} \right] =$$

$$O(1) \left[\sum' \lambda_{n}^{\delta k-1} \left\{ \sum_{v=n-\lambda_{n}+2}^{n} \frac{|\epsilon_{v}| |t_{v}'|^{k}}{v \rho_{n}} \right\} \left\{ \sum_{v=n-\lambda_{n}+2}^{n} \frac{|\epsilon_{v}|}{v \rho_{n}} \right\}^{k-1} \right]$$

$$= O(1) \left[\sum_{v=1}^{n} \lambda_{n}^{\delta k-1} \sum_{v=n-\lambda_{n}+2}^{n} \frac{|\epsilon_{v}| |t_{v}'|^{k}}{v \rho_{v+1}} \right]$$

$$= O(1) \left[\sum_{v=1}^{\infty} \frac{|\epsilon_{v}| |t_{v}'|^{k}}{v \rho_{v}} \sum_{n=v}^{v+\lambda_{v}-1} \lambda_{n}^{\delta k-1} \right]$$

$$= O(1) \left[\sum_{v=1}^{\infty} \frac{1}{v \rho_v} \sum_{n=v}^{\infty} \sum_{n=v}^{\infty} \right]$$

$$= O(1) \left[\sum_{v=1}^{\infty} \frac{|\epsilon_v| |t_v'|^k}{v \rho_v} \right]$$

Now

$$\begin{split} & \sum_{v=1}^{m} \frac{|\epsilon_{v}||t_{v}^{'}|^{k}}{v\rho_{v}} = \sum_{v=1}^{m} \frac{|\epsilon_{v}|\lambda_{v}|t_{v}^{'}|^{k}}{v\rho_{v}\lambda_{v}} \\ & = O(1) \left[\sum_{v=1}^{m-1} \Delta \frac{|\epsilon_{v}|\lambda_{v}}{v\rho_{v}} \sum_{r=1}^{v} \frac{|t_{r}^{'}|^{k}}{\lambda_{r}} + \frac{|\epsilon_{m}|\lambda_{m}}{m\rho_{m}} \sum_{r=1}^{m} \frac{|t_{r}^{'}|^{k}}{\lambda_{r}} \right] \\ & = O(1) \left[\sum_{13}^{(1)} + \sum_{13}^{(2)} + \sum_{13}^{(3)} + \sum_{13}^{(4)} + \sum_{13}^{(5)} \right] \\ & \sum_{13}^{(1)} = \sum_{v=1}^{m-1} \frac{|\Delta\epsilon_{v}|\lambda_{v}\mu_{v}}{v} = O(1) \\ & \sum_{13}^{(2)} = \sum_{v=1}^{m-1} \frac{|\epsilon_{v+1}|\Delta\lambda_{v}\mu_{k}}{v} = O(1) \\ & \sum_{13}^{(3)} = \sum_{v=1}^{m-1} \frac{|\epsilon_{v+1}|\lambda_{v+1}\mu_{v}\rho_{v}}{v} \Delta \left(\frac{1}{\rho_{v}}\right) = O(1) \end{split}$$

$$\sum_{13}^{(4)} = \sum_{v=1}^{m-1} \frac{|\epsilon_{v+1}|\lambda_{v+1}\mu_v}{v(v+1)} = O(1)$$

and

$$\sum_{13}^{(5)} = \frac{|\epsilon_m|\lambda_m\mu_m}{m} = O(1)$$

on $m \to \infty$, by virtue of conditions (1.3.1), (1.3.2) and by the hypothesis of the theorem.

Hence

$$\sum_{n}^{\prime} \lambda_{n}^{\delta k + k - 1} \left| \sum_{13} \right|^{k} < \infty$$

Further

Now

$$\begin{split} \sum_{v=1}^{m} |\epsilon_{v}| |t_{v}^{'}|^{k} \Delta \left(\frac{1}{\rho_{v}}\right) &= \sum_{v=1}^{m} |\epsilon_{v}| \lambda_{v} \Delta \left(\frac{1}{\rho_{n}}\right) \frac{|t_{v}^{'}|^{k}}{\lambda_{v}} \\ &= O(1) \left[\sum_{v=1}^{m-1} \Delta \left\{ |\epsilon_{v}| \lambda_{v} \Delta \left(\frac{1}{\rho_{v}}\right) \right\} \sum_{r=1}^{v} \frac{|t_{r}^{'}|^{k}}{\lambda_{r}} + |\epsilon_{m}| \lambda_{m} \Delta \left(\frac{1}{\rho_{m}}\right) \sum_{r=1}^{m} \frac{|t_{r}^{'}|^{k}}{\lambda_{r}} \right] \\ &= O(1) \left[\sum_{14}^{(1)} + \sum_{14}^{(2)} + \sum_{14}^{(3)} + \sum_{14}^{(4)} \right] \end{split}$$

where

$$\sum_{14}^{(1)} = \sum_{v=1}^{m-1} |\Delta \epsilon_{v}| \lambda_{v} \Delta \left(\frac{1}{\rho_{v}}\right) \rho_{v} \mu_{v} = O(1) \sum_{14}^{(2)}$$

$$= \sum_{v=1}^{m-1} |\epsilon_{v+1}| \Delta \lambda_{v} \Delta \left(\frac{1}{\rho_{v}}\right) \rho_{v} \mu_{v} = O(1) \sum_{14}^{(3)}$$

$$= \sum_{v=1}^{m-1} |\epsilon_{v+1}| \lambda_{v+1} \Delta^{2} \left(\frac{\rho_{v}}{\rho_{v}}\right) \rho_{v} \mu_{v} = O(1) \text{ and } \sum_{14}^{(4)}$$

$$= |\epsilon_{m}| \lambda_{m} \Delta \left(\frac{1}{\rho_{m}}\right) \rho_{m} \mu_{m} = O(1)$$

as $m \to \infty$ by virtue of the hypothesis

Hence,

$$\sum \lambda_n^{k-1} \left| \sum_{14} \right|^k < \infty$$

moreover, we have

$$\sum' \lambda_n^{\delta k - 1} \left| \sum_2 \right|^k + \sum' \lambda_n^{\delta k + k - 1} \left| \sum_3 \right|^k$$

$$= O(1) \left[\sum' \lambda_n^{\delta k - 1} \frac{|\epsilon_n|^k |t_n'|^k}{|\rho_n|^k} \right]$$

$$= O(1) \left[\sum' \lambda_n^{\delta k - 1} \frac{|\epsilon_n| |t_n'|^k}{|\rho_n|^k} \right]$$

Now

$$\begin{split} & \sum_{1}^{m} \quad \lambda_{n}^{\delta k-1} \frac{|\epsilon_{n}| |t_{n}^{'}|^{k}}{\rho_{n}} = \\ & \sum_{1}^{m-1} \quad \Delta \left(\frac{|\epsilon_{n}|}{\rho_{n}} \right) \sum_{r=1}^{n} \quad \lambda_{r}^{\delta k-1} |t_{r}^{'}| + + \frac{|\epsilon_{n}|}{\rho_{n}} \sum_{r=1}^{n} \quad \lambda_{r}^{\delta k-1} |t_{r}^{'}|^{k} = O(1) \big[\Sigma^{(1)} + \Sigma^{(2)} + \Sigma^{(3)} \big] \end{split}$$

where

$$\sum_{n=1}^{(1)} = \sum_{n=1}^{m-1} |\Delta \epsilon_n| \mu_n = O(1) \sum_{n=1}^{(2)} = \sum_{n=1}^{m-1} |\epsilon_{n+1}| \Delta \left(\frac{1}{\rho_n}\right) \rho_n \mu_n$$

$$= O(1)$$

and

$$\sum^{(3)} = |\epsilon_m| \mu_m = O(1)$$

as $m \to \infty$, by virtue of conditions (1.3.1), (1.3.2) and by hypothesis of theorem.

hence

$$\sum' \lambda_n^{\delta k + k - 1} \left| \sum_2 \right|^k + \sum' \lambda_n^{\delta k + k - 1} \left| \sum_3 \right|^k < \infty$$

Therefore,

$$\sum' \lambda_n^{\delta k + k - 1} |T_n|^k < \infty$$

when $\lambda_{n+1} > \lambda_n$, then we have

$$T_{n} = \frac{1}{\lambda_{n}\lambda_{n+1}} \left\{ \sum_{v=n-\lambda_{n+2}}^{n+1} (\lambda_{n} + v - n - 1) \frac{a_{v}\epsilon_{v}}{\rho_{v}} \right\} T_{n}$$

$$= \frac{1}{\lambda_{n}\lambda_{n+1}} \left\{ \sum_{v=n-\lambda_{n}+2}^{n+1} (\lambda_{n} + v - n - 1) v a_{v} \frac{\epsilon_{v}}{v \rho_{v}} \right\}$$

On applying Abel's transformation we have.

$$T_n = \begin{bmatrix} \sum_1^1 & + \sum_2^1 & + \sum_3^1 & \end{bmatrix}$$
 where

$$\sum_{1}^{1} = \frac{1}{\lambda_{n}^{2}} \sum_{v=n-\lambda_{n+2}}^{n} \Delta \left\{ (\lambda_{n} + v - n - 1) \frac{\epsilon_{v}}{v \rho_{v}} \right\} v t_{v}^{'}, \sum_{2}^{1} = \frac{\epsilon_{n+1} t_{n+1}^{'}}{\lambda_{n+1} \rho_{n+1}}$$

and

$$\sum_{3}^{1} = \frac{\epsilon_{n-\lambda_{n+2}} t'_{n-\lambda_{n}+1}}{\lambda_{n} \lambda_{n-\lambda_{n+1}} \rho_{n-\lambda_{n}+2}}$$

It is therefore sufficient to show that

$$\sum \lambda_n^{\delta k + k - 1} |\sum_r^1|^k < \infty \text{ for } r = 1,2,3$$

we have

$$\begin{split} & \sum_{n}^{"} \lambda_{n}^{\delta k + k - 1} | \sum_{1}^{'} \quad |^{k} = \sum^{"} \frac{1}{\lambda_{n}^{k + 1 - \delta k}} \left| \sum_{k = n - \lambda_{n} + 2}^{n} \right. \left. \left\{ \Delta(\lambda_{n} + v - n - k) \frac{\epsilon_{n}}{v \rho_{v}} \right\} v t_{v}^{'} \right|^{k} \leqslant \sum^{"} \frac{1}{\lambda_{n}^{k + 1 - \delta k}} \left[\sum_{v = n - \lambda_{n} + 2}^{n} \left| \Delta \left\{ (\lambda_{n} + v - n - k) \frac{\epsilon_{u}}{v \rho_{v}} \right\} v \rho t_{v}^{'} \right|^{k} \right] \end{split}$$

Since
$$\left| \Delta \left\{ (\lambda_n + v - n - 1) \frac{\epsilon_v}{v \rho_v} \right\} \right| \le \lambda_v \Delta \left(\frac{|\epsilon_v|}{v \rho_v} \right) + \frac{|\epsilon_v|}{v \rho_v}$$

therefore,

$$\Sigma'' \lambda_n^{k-1} |\Sigma_1'|^k = O(1) [\Sigma_{11}^1 + \Sigma_{12}^1]$$

where

$$\sum_{11}^{1} = \sum^{"} \frac{1}{\lambda^{k+1-\delta k}} \left\{ \sum_{v=n-\lambda_n+2}^{n} \lambda_{v\Delta} \left(\frac{|\epsilon_v|}{v\rho_v} \right) v |t_v'|^k \right\} \quad (1.4.2) \quad \sum_{12}^{1} = \sum^{"} \frac{1}{\lambda^{k+1-\delta k}_n} \left\{ \sum_{v=n-\lambda_n+2}^{n} \frac{|\epsilon_v||t_v'|^k}{\rho_v} \right\}$$

Now considering (1.4.2) we have

$$\sum_{11}^{1} = \sum_{11}^{1} {}^{(1)} + \sum_{11}^{1} {}^{(2)} + \sum_{11}^{1} {}^{(3)}$$

Where,

$$\sum_{11}^{1} {}^{(1)} \qquad \sum_{i} {}^{''} \qquad \frac{1}{\lambda^{k+1-\delta k}} \left\{ \sum_{v=n-\lambda_n+2}^{n} \frac{\lambda_v |\Delta \epsilon_v| |t_v^{'}|^k}{\rho_v} \right\}$$

$$= \sum_{v=1}^{\infty} \frac{|t'_v| \lambda_v |\Delta \epsilon_v|}{\rho_v} \sum_{n \geqslant v}^{"} \frac{1}{\lambda_n^{k+1-\delta k}}$$

$$= O(1) \sum_{v=1}^{\infty} \frac{|t_v'|^k |\Delta \epsilon_v|}{\rho_v} = O(1) \text{ on proved earlier} \qquad \sum_{11}^{1} (2) =$$

$$\sum_{n}^{"} \frac{1}{\lambda_{n}^{k+1-\delta k}} \left\{ \sum_{v=n-\lambda_{n}+2}^{n} \frac{\left|\epsilon_{v+1}\right| \left|t_{v}^{'}\right|^{k} \lambda_{v}}{(v+1)\rho_{v}} \right\}$$

$$= O(1) \sum^{"} \frac{1}{\lambda_n^{k+1-\delta k}} \left\{ \sum_{v=n-\lambda_n+2}^{n} \frac{|\epsilon_v| |t_v^{'}|^k \lambda_v}{v \rho_v} \right\}$$

$$= O(1) \sum_{v=1}^{\infty} \frac{|\epsilon_v| |t_v'|^k \lambda v}{v \rho_v} \sum_{n \geqslant v}^{"} \frac{1}{\lambda_n^{k+1-\delta k}} = O(1) \sum_{v=1}^{\infty} \frac{|\epsilon_v| |t_v'|^k}{v \rho_v}$$

= O(1) as proved earlier.

Hence

$$\Sigma_{11}^1 \quad \Sigma_{11}^{1(1)} \quad + \Sigma_{11}^{1(2)} \quad + \Sigma_{11}^{1(3)} \quad = O(1)$$

Now

$$\begin{split} & \sum_{12}^{1} = \sum^{"} \frac{1}{\lambda_{n}^{k+1-\delta k}} \left\{ \sum_{v=n-\lambda_{n}+2}^{n} \frac{\left|\epsilon_{v}\right| \left|t_{v}^{'}\right|^{k}}{\rho_{v}} \right\} \\ & = O(1) \sum_{v=1}^{\infty} \frac{\left|\epsilon_{u}\right| \left|t_{v}^{'}\right|^{k}}{\rho_{v}} \sum_{n \geqslant v} \frac{1}{\lambda_{n}^{k+1-\delta k}} = O(1) \sum_{v=1}^{\infty} \frac{\left|\epsilon_{v}\right| \left|t_{v}^{'}\right|^{k}}{\rho_{v} \lambda_{v}} \end{aligned} = \end{split}$$

O(1) as proved earlier

Hence

$$\sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1} | \sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1$$

therefore

$$\sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1} |\sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1}| \sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1} |\sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1}| \sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1} |\sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1}| \sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1} |\sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1}| \sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1} |\sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1}| \sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1} |\sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1}| \sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1} |\sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1}| \sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1} |\sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1}| \sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1} |\sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1}| \sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1} |\sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1}| \sum_{n=0}^{\infty} \lambda_n^{\delta k + k - 1}$$

Also

$$\sum_{n=0}^{\infty} \lambda_{n}^{\delta k+k-1} |\sum_{n=0}^{\infty} \lambda_{n}^{\delta k}|^{k} = O(1), as$$

as proved in the previous case for Σ_2 . Lastly

$$\sum^{"} \lambda_n^{\delta k + k - 1} | \sum_{1}^{1} |^k = O(1)$$

as proved in the previous case for Σ_3 .

This complete the proof of Theorem.

References

- [1] FLET, T.M. : On an Extension of absolute summability and some theorems for little wood and paley; Proc. London Math Soc. 7 (113-141) 1957
- [2] FLET, T.M. : Some more theorems concerning absolute summability of Fourier series and Power series; Proc. Lond, Math. Soc. (3)8 (357-387) (1958).
- [3] PRASAD, J. : Some Contribution to absolute summability; Ph.D. Thesis. Rohilkhand Univ. (1981).

[4] SINHA, R.,: : On $|V, \lambda|$ Summability factors of

CHANDRA, S. infinite series; Abstract:

Proceeding of AND KUMAR, P. Indian

Sci Congress Association section of

Math. P. 27 (1983)

[5] CHANDRA, S. : On absolute summability fields of

infinite series; Ph.D. Thesis, Rohilkhand

University (1984).