International Journal of Engineering, Science and Mathematics

Vol. 12 Issue 12, Dec 2023,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

On Zero Power Valued Generalized Homoderivation in Semi Prime Rings

Rekha Rani* Shivani Parashar **

Abstract

The Purpose of this paper is to investigate commutativity of semi prime rings in case of generalized homoderivation of semi prime rings with Lie ideal.

Keywords:

Lie ideal, generalized homoderivation, commutator, semi prime ring

Copyright © 2023 International Journals of Multidisciplinary Research Academy. All rights reserved.

Author correspondence:

Shivani Parashar, Research Scholar, Department of Mathematics S.V. College Aligarh Email: shivani8parashar@gmail.com

1. Introduction

Throughout this paper, R denotes an associative ring with centre Z(R). For any x, $y \in R$, the notation [x, y] denotes commutator xy - yx and x o y denotes an anti-commutator xy + yx. Recall that a ring R is prime if for any x, $y \in R$, $xRy = \{0\}$ implies that x = 0 or y = 0 and R is semi-prime if $xRx = \{0\}$ implies that x = 0. An additive subgroup U of R is said to be a Lie ideal of R if $[u, r] \in U$, for all $u \in U$ and $x \in R$. An additive mapping $x \in R$ is called a derivation if $x \in R$ and additive mapping $x \in R$. In $x \in R$ is called a homoderivation if $x \in R$ and $x \in R$ where $x \in R$ is an endomorphism on $x \in R$. Thus, it is clear that a homoderivation $x \in R$ is also a derivation if $x \in R$ where $x \in R$ is an endomorphism on $x \in R$.

Motivated by the definition of a homoderivation, the notion of generalized homoderivation was extended as follows: An additive mapping $F: R \rightarrow R$ is called a right generalized homoderivation derivation if there exists a homoderivation $d: R \rightarrow R$ such that F(xy) = F(x)h(y) + F(x)y + xh(y), for all $x, y \in R$ and F is called a left generalized homoderivation if there exists a

^{*} Professor, Department of Mathematics, S.V.College, Aligarh, U.P., INDIA

^{**} Research Scholar, Department of Mathematics, S.V.College, Aligarh, U.P., INDIA

homoderivation $h: R \rightarrow R$ such that F(xy) = h(x)F(y) + h(x)y + xF(y), for all $x, y \in R$. F is said to be a generalized homoderivation associated with homoderivation h if it is both a left and a right generalized homoderivation associated with homoderivation h. If $S \subseteq R$, then a mapping $F: R \rightarrow R$ preserves S if $F(S) \subseteq S$. A mapping $F: R \rightarrow R$ is zero - power valued on S if F preserves S and for each $x \in S$, there exist a positive integer n(x) > 1 such that $F^{n(x)}(x) = 0$.

- In [3.], Daif and Bell proved that if R is a semiprime ring U a nonzero ideal of R and d a derivation of R such that d([x, y]) = [x, y], for all $x, y \in U$, then $U \in Z$. In 2007, Ashraf et al [2] prove that a prime ring R must be commutative if R satisfies any one of the following conditions
- (i) F(xy) = xy, (ii) F(x)F(y) = xy, where F is a generalized derivation of R and I is a nonzero two sided ideal of R. Recently in 2023, Boua & Sogutcu [9] investigate the commutative of semiprime rings if R satisfies the following conditions: (i) $F[u,v] = \pm [u,v]$ (ii) F[u,v] = uov, for all $u, v \in I$. In this paper, we prove these results for generalized homoderivation with Lie ideals in semi-prime rings.

1. Preliminaries

We shall use frequently the following basic commutator identities:

$$[a,bc] = b[a,c] + [a,b]c,$$

$$[ab,c] = [a,c]b + a[b,c],$$

$$a \circ (bc) = (a \circ b)c - b[a,c] = b(a \circ c) + [a,b]c,$$

$$(ab) \circ c = a(b \circ c) - [a,c]b = (a \circ c)b + a[b,c]$$

We began with the following lemma which is required to prove our results:

Lemma 2.1 [8, Corollary 2.1]. Let R be a 2-torsion free semi- prime ring, U a noncentral Lie ideal of R and $a, b \in U$.

- (i) If $aUa = \{0\}$, then a = 0.
- (ii) If $aU = \{0\}$, (or $Ua = \{0\}$), then a = 0.

2. Main Results

Theorem 3.1. Let R be a semi-prime ring with $CharR \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R such that $h(U) \subseteq U$. If $F([u, v]) = (v \circ u)$, for all $u, v \in U$, then h is commuting map on U.

Proof. we have

$$F([u,v]) = (v \circ u), \text{ for all } u, v \in U.$$
(3.1)

Replacing v by 2vu in equations (3.1), we obtain that

$$F([u,vu]) = (vu o u), \text{ for all } u,v \in U.$$

$$F([u,v]u) = (v o u)u, \text{ for all } u,v \in U.$$

i.e.,

$$F[u,v]/(u) + F[u,v]u + [u,v]/(u) = (v \circ u)u,$$
 for all $u, v, \epsilon U$.
 $F[u,v](h(u) + u) + [u,v]h(u) = (v \circ u)u,$ for all $u, v \epsilon U$.

Since h is zero-power valued on U, there exists an integer n(x) > 1 such that $h^{n(x)}(x) = 0$, for all $x \in U$. Replacing u by $u - h(u) + h^2(u) + \dots + (-1)^{n(u-1)}h^{n(u)-1}(u)$ in the above equation, we get

$$F[u,v]u + [u,v]h(u) = (v \circ u)u, \quad for all u, v \in U.$$

Using the given hypothesis, the above relation yields that

$$[u, v]h(u) = 0, \text{ for all } u, v \in U.$$
(3.2)

Again, replacing v by 2vw in equation (3.2) and using the fact that Char $R \neq 2$, we get

$$[u, vw]h(u) = 0$$
, for all $u, v, w \in U$.

which gives that (v[u, w] + [u, v]w)h(u) = 0, for all $u, v, w \in U$, i.e., v[u, v]h(u) + [u, v]wh(u) = 0, for all $u, v, w \in U$. Using the equation (3.2), the above relation yields that [u, v]wh(u) = 0, for all $u, v, w \in U$.

Now replace v by h(u), we get

$$[u, h(u)]wh(u) = 0, \text{ for all } u, w \in U.$$
(3.3)

Right multiplication of equation (3.3) by u, we get

$$[u, h(u)]wh(u)u = 0, \text{ for all } u, w \in U.$$

$$(3.4)$$

Replacing w by 2wu in equation (3.3) and using the fact that $CharR \neq 2$, we get

$$[u, h(u)]wu h(u) = 0, \text{ for all } u, w \in U.$$
(3.5)

Now Subtracting equation (3.4) from equation (3.5), we arrived that

$$[u, h(u)]wuh(u) - [u, h(u)]wh(u)u = 0, for all u, w \in U.$$

$$[u, h(u)]w(uh(u)u - h(u)u) = 0, for all u, w \in U.$$

$$[u, h(u)]w[u, h(u)] = 0, for all u, w \in U.$$

$$[u, h(u)] U [u, h(u)] = 0, for all u, \in U.$$

Using Lemma 2.1, we obtain that [u, h(u)] = 0, for all $u \in U$. Hence h is commuting map on U.

Theorem 3.2. Let R be a semi-prime ring with $Char R \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R such that $h(U) \subseteq U$. If $F([u, v]) = -(v \circ u)$, for all $u, v \in U$, then h is commuting map on U.

Proof. we have,

$$F([u,v]) = -(v \circ u), for all u, v \in U.$$
(3.6)

Replacing v by 2vu in equations (3.6) and using the fact that CharR \neq 2, we obtain that

$$F([u,vu]) = -(vu \circ u), for all \ u,v \in U.$$

$$F([u,v]u) = -(v \circ u)u, for all \ u, v \in U.$$

i.e.

$$F[u,v]h(u) + F([u,v])u + [u,v]h(u) = -(v \circ u)u, for all u, v \in U.$$

$$F[u,v](h(u) + u) + [u,v]h(u) = -(v \circ u)u, \text{ for all } u,v \in U.$$

Since h is zero-power valued on U, there exists an integer n(x) > 1 such that $h^{n(x)}(x) = 0$, for all $x \in U$. Replacing u by $u - h(u) + h^2(u) + \dots + (-1)^{n(u-1)}h^{n(u)-1}(u)$ in the above equation, we get

$$F[u,v]u + [u,v]h(u) = -(v \circ u)u, for all \ u,v \in U.$$

Using the equation (3.6), the above relation yields that

$$[u,v]h(u) = 0, for all u, v \in U.$$
(3.7)

Proceeding in the same manner as in the proof of Theorem 3.1., we get the required result.

Theorem 3.3. Let R be a semi-prime ring with $Char R \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R such that $h(U) \subseteq U$. If F([u, v]) = [v, u], for all $u, v \in U$, then h is commuting map on U.

Proof. we have.

$$F([u,v]) = [v,u], \text{ for all } u,v, \in U.$$
(3.8)

Replacing v by 2vu in equations (3.8) and using the fact that $Char R \neq 2$, we obtain that

$$F([u,vu]) = [vu,u], for all u, v \in U.$$

$$F([u,v]u) = [v,u]u, for all u, v \in U.$$

i.e.,

$$F[u,v]h(u) + F[u,v]u + [u,v]h(u) = [v,u]u, for all u, v \in U.$$

$$F[u,v](h(u) + u) + [u,v]h(u) = [v,u]u, for all u, v \in U.$$

Since h is zero-power valued on U, there exists an integer n(x) > 1 such that $h^{n(x)}(x) = 0$, for all $x \in U$. Replacing u by u— $h(u) + h^2(u) + + (-1)^{n(u-1)}h^{n(u)-1}(u)$ in the above equation, we get

$$F[u,v]u + [u,v]h(u) = [v,u]u, for all u, v \in U.$$

 $F[u,v]u + [u,v]h(u) = [v,u]u, for all u, v \in U.$

Using the given hypothesis, the above relation yields that

$$[u,v]h(u) = 0, for all u, v \in U.$$
(3.9)

Proceeding in the same manner as in the proof of Theorem 3.1., we obtain the required result.

Theorem 3.4. Let R be a semi-prime ring with $Char R \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R such that $h(U) \subseteq U$. If F([u,v]) = -[v,u], for all $u, v \in U$, then h is commuting map on U.

Proof. we have,

$$F([u,v]) = -[v,u], for all u, v \in U.$$
(3.10)

Replacing v by 2vu in equations (3.10) and using the fact that Char R \neq 2, we obtain that

$$F([u,vu]) = -[vu,u], for all u, v \in U.$$

$$F([u,v]u) = -[v,u]u, for all u, v \in U.$$

i.e.,

$$F[u,v]h(u) + F[u,v]u + [u,v]h(u) = -[v,u]u, for all u, v \in U.$$

$$F[u,v](h(u) + u) + [u,v]h(u) = -[v,u]u, for all u, v \in U.$$

Since h is zero-power valued on U, there exists an integer n(x) > 1 such that $h^{n(x)}(x) = 0$, for all $x \in U$. Replacing u by $u - h(u) + h^2(u) + \dots + (-1)^{n(u-1)} h^{n(u)-1}(u)$ in the above equation, we get

$$F[u,v]u + [u,v]h(u) = -[v,u]u, for \ all \ u,v \in \ U.$$

Using the given hypothesis, the above relation yields that

$$[u,v]h(u) = 0, for all \ u,v \in U. \tag{3.11}$$

Proceeding in the same manner as in the proof of Theorem 3.1, we obtain the srequired result.

Theorem 3.5. Let R be a semi-prime ring with $Char R \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation P of R such that P (P (P (P (P)) = [P, P], for all P , P (P), then P is commuting map on P .

Proof. we have,

$$F(u \circ v) = [v, u], \text{ for all } u, v, \epsilon U. \tag{3.12}$$

Replacing v by 2vu in equations (3.12) and using the fact that $Char R \neq 2$, we obtain that

$$F(u \circ vu) = [vu, u], \text{ for all } u, v \in U.$$

$$F((u \circ v)u) = [v, u]u, \text{ for all } u, v \in U.$$

i.e.,

$$F(u \circ v)h(u) + F(u \circ v)u + (u \circ v)h(u) = [v,u]u$$
, for all $u,v \in U$.

$$F(u \circ v)(h(u) + u) + (u \circ v)h(u) = [v, u]u, \text{ for all } u, v \in U.$$

Since h is zero-power valued on U, there exists an integer n(x) > 1 such that $h^{n(x)}(x) = 0$, for all $x \in U$. Replacing u by $u - h(u) + h^2(u) + \dots + (-1)^{n(u-1)} h^{n(u)-1}(u)$ in the above equation, we get

$$F((u \circ v)u) + (u \circ v)h(u) = [v,u]u, \quad \text{for all } u,v \in U.$$

Using the equation (3.12), the above relation yields that

$$(u \circ v)h(u) = 0, \text{ for all } u, v \in U.$$
(3.13)

Again, replacing v by 2wv in equation (3.13) and using the fact that $Char R \neq 2$, we get $(u \circ wv)h(u) = 0$, which gives that $(w(u \circ v) + [u,w]v)h(u) = 0$, for all $u,v,w \in U$, i.e., $w(u \circ v)h(u) + [u,w]vh(u) = 0$, for all $u,v,w \in U$. Using the equation (3.13), the above relation yields that [u,w]vh(u) = 0, for all $u,v,w \in U$.

Proceeding in the same manner as in the proof of Theorem 3.1., we obtain the required result.

Theorem 3.6. Let R be a semi-prime ring with $Char R \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation P of P such that P (P) and P (P) and

Proof. we have,

$$F(u \circ v) = -[v, u], \text{ for all } u, v, \in U. \tag{3.14}$$

Replacing v by 2vu in equations (3.14), we obtain that

$$F(u \circ vu) = -[vu, u], \quad for all u, v \in U.$$

i.e.,

$$F((u \circ v)u) = -[v,u]u, \quad \text{for all } u,v \in U.$$

Or,

$$F(u \circ v)h(u) + F(u \circ v)u + (u \circ v)h(u) = -[v,u]u, \quad \text{for all } u, v \in U.$$

$$F(u \circ v)(h(u) + u) + (u \circ v)h(u) = -([v,u]u), \quad \text{for all } u, v \in U.$$

Since h is zero-power valued on U, there exists an integer n(x) > 1 such that $h^{n(x)}(x) = 0$, for all $x \in U$. Replacing u by $u - h(u) + h^2(u) + \dots + (-1)^{n(u-1)}h^{n(u)-1}(u)$ in the above equation, we get

$$F((u \circ v)u) + (u \circ v)h(u) = -[v,u]u, \text{ for all } u,v \in U.$$

Using the equation (3.14), the above relation yields that

$$(u \circ v)h(u) = 0, \text{ for all } u, v \in U.$$
(3.15)

Again, replacing v by 2wv in equation (3.15) and using the fact that $Char R \neq 2$, we get $(u \circ wv)h(u) = 0$, which gives that $(w(u \circ v) + [u, w]v)h(u) = 0$, for all $u, v, w \in U$, i.e., $w(u \circ v)h(u) + [u, w]vh(u) = 0$, for all $u, v, w \in U$. Using the equation (3.15), the above relation yields that [u, w]vh(u) = 0, for all $u, v, w \in U$. Now the proof runs as Theorem 3.1.

Theorem 3.7. Let R be a semi-prime ring with $CharR \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R such that $h(U) \subseteq U$. If F([u, v]) + h([u, v]) + [u, v] = 0, for all $u, v \in U$, then h is commuting map on U.

Proof. we have,

$$F([u,v]) + h([u,v]) + [u,v] = 0, for all u, v \in U.$$
(3.16)

Replacing v by 2vu in equations (3.16) and using the fact that $CharR \neq 2$, we obtain that

$$F([u,vu]) + h([u,vu]) + [u,vu] = 0, for all u, v \in U.$$

i.e., $F([u,v]u) + h([u,v]u) + [u,v]u = 0, for all u, v \in U.$

$$F([u,v])h(u) + F([u,v])u + [u,v]h(u) + h[u,v]h(u) + h([u,v])u + [u,v]h(u) + [u,v]u = 0,$$

F([u,v])(h(u)+u)+[u,v]h(u)+h[u,v](h(u)+u)+[u,v]h(u)+[u,v]u = 0,

Since h is zero-power valued on U, there exists an integer n(x) > 1 such that $h^{n(x)}(x) = 0$, for all $x \in U$. Replacing u by $u - h(u) + h^2(u) + \dots + (-1)^{n(u-1)}h^{n(u)-1}(u)$ in the above equation, we get

$$F([u,v])u + [u,v]h(u) + h([u,v])u + [u,v]h(u) + [u,v]u = 0, for all u, v \in U.$$

$$F([u,v])u + h([u,v])u + 2[u,v]h(u) + [u,v]u = 0, for all u, v \in U.$$

Using the given hypothesis, the above relation yields that 2[u, v]h(u) = 0, for all $u, v \in U$. Since R is of $CharR \neq 2$, we have [u, v]h(u) = 0, for all $u, v \in U$.

Now the proof runs as the proof of Theorem 3.1, we get the required result.

Theorem 3.8. Let R be a semi-prime ring with $Char R \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R such that $h(U) \subseteq U$. If $F([u, v]) + h([u, v]) + (u \circ v) = 0$, for all $u, v \in U$, then h is commuting map on U.

Proof. we have

$$F([u,v]) + h([u,v]) + (u \circ v) = 0, \text{ for all } u, v, \in U.$$
(3.17)

Replacing v by 2vu in equations (3.18) and using the fact that CharR $\neq 2$, we obtain that

$$F([u,vu]) + h([u,vu]) + (u \circ vu) = 0, for all u, v \in U.$$

 $F([u,v])u + h([u,v])u + (u \circ v)u = 0, for all u, v \in U.$

$$F([u,v])h(u) + F([u,v])u + [u,v]h(u) + h([u,v])h(u) + h([u,v])u + [u,v]h(u) + (u \circ v)u = 0,$$

$$F[u,v](h(u) + u) + [u,v]h(u) + h([u,v])(h(u) + u) + [u,v]h(u) + (u \circ v)u$$

= 0, for all u, v \(\in U.

Since h is zero-power valued on U, there exists an integer n(x) > 1 such that $h^{n(x)}(x) = 0$, for all $x \in U$. Replacing u by $u - h(u) + h^2(u) + \dots + (-1)^{n(u-1)} h^{n(u)-1}(u)$ in the above equation, we get

$$F([u,v]u) + [u,v]h(u) + h([u,v]u) + [u,v]h(u) + (u \circ v)u = 0, for all u, v \in U.$$

$$F([u,v]u) + h([u,v]u) + 2[u,v]h(u) + (u \circ v)u = 0, for all u, v \in U.$$

Using the given hypothesis, the above relation yields that 2[u, v]h(u) = 0, for all $u, v \in U$. Since R is semi prime ring with $CharR \neq 2$,

$$[u, v]h(u) = 0, for all u, v \in U.$$
(3.18)

Proceeding in the same manner as in the proof of Theorem 3.1, we obtain the required result.

Theorem 3.9. Let R be a free semi-prime ring with $CharR \neq 2$ and U a nonzero Lie ideal of R. Suppose that R admits a right generalized homoderivation F associated with a homoderivation h of R such that $h(U) \subseteq U$. If $F(u \circ v) + h(u \circ v) + (u \circ v) = 0$, for all $u, v \in U$, then h is commuting map on U.

Proof. we have,

$$F(u \circ v) + h(u \circ v) + (u \circ v) = 0, \text{ for all } u, v \in U.$$
(3.19)

Replacing v by 2vu in equations (3.20) and using the fact that $CharR \neq 2$, we obtain that

$$F(u \circ vu) + h(u \circ vu) + (u \circ vu) = 0, for all u, v \in U.$$

$$F((u \circ v)u - v[u,u]) + h((u \circ v)u - v[u,u]) + ((u \circ v)u - v[u,u]) = 0, \text{ for all } u, v \in U.$$

i.e.

$$F((u \circ v)u) + h((u \circ v)u) + (u \circ v)u = 0, \text{ for all } u, v \in U.$$

F(uov)h(u) + F(uov)u + (uov)h(u) + h(uov)h(u) + h(uov)u + (uov)h(u) + (uov)u = 0,

$$F(uov)(h(u) + u) + (uov)h(u) + h(uov)(h(u) + u) + (uov)h(u) + (uov)u = 0,$$

Since h is zero-power valued on U, there exists an integer n(x) > 1 such that $h^{n(x)}(x) = 0$, for all $x \in U$. Replacing u by $u - h(u) + h^2(u) + + (-1)^{n(u-1)}h^{n(u)-1}(u)$ in the above equation, we get

$$F(u \circ v)u + (u \circ v)h(u) + h(u \circ v)u + (u \circ v)h(u) + (u \circ v)u = 0, for \ all \ u, v \in U.$$

Using the given hypothesis, the above relation yields that $2[u \circ v]h(u) = 0$, for all $u, v \in U$. Since R is a semi prime ring with $CharR \neq 2$,

$$(u \circ v)h(u) = 0, \text{ for all } u, v \in U. \tag{3.20}$$

Again, replacing v by 2wv in equation (3.20) and using the fact that $CharR \neq 2$, we get (uov)h(u) = 0, for all $u, v \in U$ which gives that $(w(u \circ v) + [u, w]v)h(u) = 0$, for all $u, v, w \in U$, i.e., $w(u \circ v)h(u) + [u, w]vh(u) = 0$, for all $u, v, w \in U$. Using equation (3.20), the above relation yields that [u, w]vh(u) = 0, for all $u, v, w \in U$. Now follow the proof of Theorem 3.1, we get the required result.

References

- [1] M. Ashraf and N. Rehman, "On derivation and commutativity in prime rings", *East-west J. Math.* 3(1), 87–91, (2001).
- [2] M. Ashraf, A. Ali and S. Ali, "Some commutativity theorems for rings with generalized derivations", *Southeast Asian Bull. Math.*, 31(3), 415-421, (2007).
- [3] M. N. Daif and H. E. Bell, "Remarks on derivations on semiprime rings," *IJMMS*, 15 (1), 205-206, (1992).
- [4] El-Soufi, M. M., "Rings with some kinds of mappings," M.Sc. Thesis, Cairo University, Branch of Fayoum, Cairo, Egypt, (2000).
- [5] N. Rehman, M. Mozumder, R. Abbasi., "Homoderivations on ideals of prime and semiprime rings", *The Aligarh Bulletin of Mathematics*, 38(1-2), 77-87, (2019).
- [6] E. K. Sogutcu, and O. Golbasi, "Lie ideals of semiprime rings with generalized derivations", *Advyaman University Journal of Science*, 8(1), 1-12, (2018).
- [7] M. N. Daif, and H. E. Bell, "On commutativity and strong commutativity- preserving maps", *Canad. Math. Bull.* 37(4), 443-447, (1994).
- [8] M. Hongan, N. Rehman, R. Mohammed and Al. Omary, "Lie Ideals and Jordan Triple derivations in Rings." *Rend. Sem. Mat. Unv. Padova.* 125, 147-156, (2011).
- [9] A. Boua and E.K. Sogutcu, "Semiprime Rings with Generalized Homoderivations." *Bol. Soc. Paran. Mat.* (41) (2023).