
International Journal of Engineering, Science and Mathematics
Vol. 10 Issue 3, March 2021,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &
Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

138 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

INSIGHTFUL ARGUMENTATION-BASED INVESTIGATION OF SOFTWARE

ARCHITECTURE REASONING DURING DESIGN COLLABORATION

Ranjan Sah

M.Phil, Roll No. : 140439, Session – 2014-15

Department of Computer Science, B.R.A. Bihar University, Muzaffarpur, India

ABSTRACT:

This investigation delves into the profound realm of software architecture reasoning

during the design phase, employing a methodology centered on insightful argumentation.

Software architecture is the cornerstone of any robust software system, dictating its

structure, functionality, and scalability. However, the reasoning processes that guide

architects in making critical design decisions are often intricate and multi-faceted. This

study adopts an argumentation-based approach, recognizing the inherent complexity of

software architecture reasoning and the need for a structured analysis framework. By

leveraging argumentation as a tool for exploration and evaluation, the research aims to

uncover the nuanced layers of decision-making involved in the architectural design

process. The investigation encompasses a comprehensive review of existing software

architecture models, design patterns, and best practices, laying the groundwork for a

systematic analysis of reasoning patterns. Drawing inspiration from critical thinking and

formal argumentation, the research seeks to identify and categorize key arguments that

architects employ when making pivotal decisions. Furthermore, the study explores the

impact of various contextual factors, such as project requirements, stakeholder

preferences, and technological constraints, on the reasoning process.

keywords: Argumentation, Software, Architecture

 ISSN: 2320-0294 Impact Factor: 6.765

139 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

INTRODUCTION

The structures of a computer programme or system are described by the acronym SA,

which stands for software architecture. Aside from the software components, these

structures also include the externally observable piece features and the relationships

between them. Every area of human life has been profoundly impacted by the ubiquitous

availability of software. Higher standards of software quality are expected as a result of

both the ever-increasing demands of consumers and the abundance of applications. Thus, it

is more challenging to understand, oversee, quantify, and regulate software, and even to

reduce software complexity, inside the domain of software architecture. Reason being,

software design is dynamic and ever-changing. To reduce the amount of time needed for

realisation and increase productivity, software architecture plans, implements, and collects

the analysis of operations within a family of systems. This is achieved by generating,

carrying out, and amassing such measures. Stakeholders gain from SA because it facilitates

efficient development, makes it easier to promote reuse, and helps stakeholders understand

design decisions. Furthermore, SA facilitates the promotion of reuse.

We are currently methodically reconstructing the most fundamental needs in software

development to meet the demands of new prospects that have arisen due to the demand for

technologies. One goal of software architecture is to facilitate the automated development

of software systems that meet user-specified specifications. Its current focus is on

automating the process of designing software systems' architectures and it is also making

headway in developing executable programmes. These two events are occurring at the

same time. It is feasible to accomplish this due to the programme's architectural designs,

the use of standard solutions, and the efficient utilisation of the software system's quality

characteristics. With the modular approach, the software architecture may be seamlessly

incorporated into an existing business. Using the modular approach makes this possible.

When it comes to the IT industry's existing assets and infrastructure, it can provide

adaptation and flexibility. Implementations of software architecture are still making noise

in the corporate world. The goal of these implementations is to offer a structure for multi-

level technical effort integration, new ways to promote and reuse technology, and ways to

capitalise on the strengths of existing systems.

Software Architecture in Software Engineering

During software engineering, software architecture is a useful tool. Helping to expose a

system's structure while hiding some implementation details is its stated goal. The focus in

architecture is similar to that in software engineering: on the relationships between parts

and how they work together. Everyone knows that there's a lot of overlap between software

architecture and software engineering. Both of these things have been merged into one

since many of the rules that control them are the same. It is possible to notice the

difference when decisions are made with software engineering in mind and the software

architecture is the result of those decisions.

 ISSN: 2320-0294 Impact Factor: 6.765

140 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

Remember that while technical engineering encompasses software architecture in its

entirety, not all engineering does. Bear this in mind; it is important. It is the responsibility

of the software architect in software engineering to identify which parts of the programme

are fundamental to its inner workings and which are merely technical details. At now,

software architecture sits on top of software engineering, which is in charge of choosing

the way sophisticated system designs and creations are carried out. When it comes to

software engineering, software architecture is now king.

Software Architecture Design Tools

The use of software architectural design tools allows for the building of software

architecture that is devoid of significant flaws or challenges. This is done through the

utilisation of these tools. It is possible to reduce the risk of mistakes occurring during the

implementation of the programme or defects in the design that will have implications later

on in the development process or when the software is used widely when one makes use of

the proper tools. This is because one is able to reduce the likelihood of errors arising

during the implementation of the programme.

It is feasible to build software that is free of any security problems by utilising software

architectural design tools. This is something that can be accomplished. Considering that

there are software risks involved with each and every step of the software development

process, this is of the utmost significance. The ability to proceed with self-assurance is

afforded to teams in the case that they are successful in avoiding software flaws or

difficulties. On the other hand, given that this is not always possible, software architectural

design tools not only need to be able to detect problems that arise during the creation of

software, but they also need to be able to make the required repairs in a timely manner.

When you utilise software architectural design tools that are able to uncover defects, you

will have the ability to evaluate the core programme design, estimate the possibility of an

attack, identify probable threat elements, and determine any holes or gaps in the security

that is now in place. All of these things can be accomplished by using these tools.

Instruments such as those provided by CAST are able to discover and repair design errors

across the course of the software architecture design process, which makes them cost-

effective. This ability allows them to detect and rectify design problems effectively. This

encompasses the first phases, which are the most advantageous period to identify and

address problems. Through the utilisation of tools that do architectural risk analysis, threat

modelling, and other jobs of a similar kind, the software architecture may be located,

rectified, and changed.

Organisations that fail to make use of the right software architectural design tools may be

caught aback by the challenges that may reveal themselves at a later period, the

consequences of which may even be fatal. These difficulties may manifest themselves at a

later time. There are software architectural defects that may go unnoticed for a length of

time; nonetheless, they will eventually become visible. These flaws are present inside the

framework of software architecture. It is necessary to provide a response to the question of

 ISSN: 2320-0294 Impact Factor: 6.765

141 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

how much risk was involved and how much work was put in before it was identified.

There is a possibility that this will have a detrimental impact not just on the bottom line of

businesses but also on their safety and reputation.

If the individuals who are required to make use of the architecture are not aware of what it

is, are unable to comprehend it to the extent that it can be applied, or (worst of all)

misinterpret it and apply it in an unsuitable manner, then even the most superior

architecture, which is the one that is the most perfectly suited for the task at hand, would

be almost worthless. Although the architectural team put in a lot of effort, research, and

hard work, all of their hard work and sophisticated design will have been for naught. This

is because the design will not have the desired effect.

ARCHITECTURE FOCUSED ON SERVICE

In the realm of architecture, the style that is commonly referred to as Service Oriented

Architectures (SOA) is one that adheres to the principle of service orientation. The

integration of service-based development, service-based terms of service, and service

performance objectives may be accomplished through a wide range of different

methodological techniques. As a tool for integrating organisational processes in a number

of different ways, as well as for promoting reuse while harnessing the value that is already

there in legacy systems, SOA implementations continue to make their presence known in

web services. This is because SOA implementations present a framework for integrating

organisational processes. Due to the capability of service-oriented architecture to reduce

inefficiency and inflexibility, the application processes that are crucial to the operation of

the company may reap the benefits of this design. In addition to reducing the risk, it

maximises the value that is already there in the process. This is a significant advantage. In

addition, service-oriented architecture offers the idea that the active operations of a

software organisation are not static, and it focuses an emphasis on the dynamic viewpoint

in order to get better results. This is done in order to achieve better outcomes.

1. When a service that is comparable already exists, developers could not be receptive

to the request. As a result, it is essential to maintain a service directory that is

readily accessible, as well as one that makes use of the basic terminology that is

utilised throughout the software development organisation.

2. When contemplating the design and execution of services, it is necessary to take

into account the boundaries that are not traditionally regarded. For the purpose of

promoting their reuse inside the organisation, coarse-grained development and

modular services are helpful.

SOFTWARE TESTING

One of the most important considerations in the process of developing software is the

quality of the programme that is being developed. Approaches that may be utilised to

improve the quality of software and metrics have been the subject of a significant number

of recommendations that have been contributed. A reduction in the number of flaws that

 ISSN: 2320-0294 Impact Factor: 6.765

142 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

are still there is something that has to be done. A number of alternative approaches have

been proposed in attempt to lessen the number of flaws that are still present after the

process has been completed. There is a possibility that adequate testing can be carried out

in order to cut down on the number of issues that are still present. Software testing is one

of the most vital and crucial strategies that can be employed to effectively create high-

quality software. It is also one of the most important procedures. One of the primary

reasons for the failure of software is the testing of the programme that was carried out in

order to determine whether or not faults were there. On the other hand, the process of

testing software is one that is not just time-consuming but also expensive. It is also feasible

to define software testing as the process of validating and verifying software in order to

ensure that the programme fulfils both the technical and business requirements in the

manner that is anticipated. This is another way of describing software testing. Verification

is carried out in order to ensure that the validation is as close as possible to the functional

testing. The Software Under Test (SUT) procedure is used to attain this goal. This

procedure assures that the software fulfils the standards and is as close as feasible to the

structural testing. There are two sorts of testing methodologies that are often utilised, and

they are structure testing and functionality testing. Performing structural testing within the

code itself is something that is done. For the purpose of functional testing, the needs of the

system's functional capabilities serve as the basis. It is possible to carry out testing in either

an automated or manual fashion by making use of various testing tools. The results of a

comparison between automated testing and manual testing show that the latter is not better

to the former.

SOFTWARE METRICS

At this point in time, it is essential for the methods that are utilised for software testing to

develop into a monitor of leading software that is able to carry out an efficient quality and

control examination. When it comes to the process of software testing, it is feasible to

pinpoint the developments that have taken place as a result of the discovery of fresh

techniques to approximate the features of their quality measures. Automatic software

testing is performed with the intention of identifying the features that can be quantified and

demonstrating the progress that has been made in terms of quality modifications.

Developing high-quality software requires a number of components, two of which are the

software testing process and an efficient software quality process. Both of these processes

are incredibly significant. In the supply sector of the service-oriented business, the

software metrics approach is a method that has the potential to be included into the

management information system and employed. Because it acts as both a framework and

an evaluation for the improvement, the service-oriented software metric is the foundation

upon which every corporate improvement is built. Metrics for software products are

utilised to evaluate the characteristics of a product that is in the process of being

developed, whereas metrics for software processes are utilised to evaluate the quality of

software.

 ISSN: 2320-0294 Impact Factor: 6.765

143 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

Figure 1 Model for Evaluating Software Quality

Metrics in software development are a way to quantify the observable, measurable, and

calculable aspects of a software product or process. The term "software metric" describes

this kind of evaluation tool. The program's measurements are utilised to create the software

metrics. Figure 1, which is up there, shows these measurements. It makes it easier to put a

numerical value on a certain metric. The term "metrics" is used to describe the process of

measuring different parts of an activity so that it might be easier to assess how far along

the path to success it is. Metrics are frequently domain-specific; in this case, that means

they have limited applicability and cannot be used for direct comparisons or analysis

outside of the specified domain. To sum up, they have little use outside of that specific

field. Both the software development process and the assessment of the software product

should be considered when talking about software metrics. You may use them to analyse

and evaluate software products, or even to predict how such products will perform. In

order to process or compare software solutions, several measurable indicators are utilised.

The components must be adequately documented, and a thorough description of the

software metrics must be provided when they are being used. Table 1.1 provides a tabular

representation of a software metric measuring example. We do this so you may see how far

along the track investigation is and how far along the software maintenance activities are.

 ISSN: 2320-0294 Impact Factor: 6.765

144 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

Table 1 Elements of Software Metrics

The software's quality is an important factor to consider while working with procedures

that aim to provide services. A system's quality is identical to its functional and non-

functional features, not different from them. Technical support, training, and productivity

are only a few of the many aspects contributing to the enormous influence of software

usability on software industry evaluations as a whole. All of these things are contributing

to the already substantial impact. Software firms are preparing to embrace new or updated

versions of software because of this, and the usability of software is reaping financial

rewards as a result of this. When considering the time and effort needed to do the

evaluation, together with objectivity and validity, the usability of software assessment

could be a difficult scheme to construct. From the standpoint of finding a middle ground

between the three considerations, this is correct. Considerations such as a program's

responsiveness or performance, its ease of maintenance, and the amount of time and

energy it uses all contribute to its usability.

SOFTWARE ARCHITECTURE CHALLENGES

The Software Architecture acts as the blueprint document, and its primary function is to

make it easier for the personnel who are participating in the development process to

communicate with one another. In the modern world, the software business is increasing at

a tremendous rate; hence, testing and maintenance may begin after the creation of a

product has been completed. Throughout the course of my employment, I have engaged in

a number of talks with a wide range of team leaders, project managers, and solution

architects who are accountable for the execution of software architecture. Throughout the

course of these discussions, I have repeatedly seen that the process of managing change in

software is one that is loaded with difficulties. The quality assurance process is the second

activity that makes a major contribution. It is for this reason that it is asserted that the care,

clarity, and completeness of the software development process, together with accuracy and

flexibility, without compromising reliability and performance, are extremely important

throughout the entirety of the process. At the same time, the software testing, software

maintenance, software analysis, software quality assurance, and programme debugging

processes are all facing the same problem. Within this particular domain, the utilisation of

slicing is employed in order to facilitate the simplification of their task. Following the

production and distribution of the product, the provision of service takes on a greater

significance, and it is important to the achievement of any individual's goals. One of the

 ISSN: 2320-0294 Impact Factor: 6.765

145 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

things that really interests me about slicing is the fact that the value of connected services

extends beyond the realm of development. It is fairly motivating to achieve anything in this

prosperous sector, which is necessary in order to do the task for the thesis. The term

"slicing" refers to the process of applying software on several levels, most commonly with

programmes. When it comes to large systems, it is applied to software architecture through

the use of software architecture. The slicing is computed when the impacting criterion is

taken into consideration, and it is also impacted by the criterion that determines whether

the application will flow in the forward or backward direction. Depending on the behaviour

of the programme, the slicing process can also be carried out in a static or dynamic form.

LITERATURE REVIEW

Liang et al. (2010). A paradigm shift has occurred in software architecture, with the

emphasis moving from detailing the end result of the architecting process to recording

architectural details. The primary goal of this field of study has been to record architectural

information, including the reasoning behind the decisions made throughout the design

process. Furthermore, software architecture is primarily a distributed, global, and

collaborative process. A vital and integral part of this system is the sharing and recycling

of architectural information. Despite the long-standing acknowledgement of the

importance of architectural knowledge, no systematic approach has been developed that

prioritises the integration of architectural information into collaborative frameworks. In

order to address this issue, this chapter suggests a two-pronged approach: first, a

collaborative architecting methodology based on architectural knowledge; and second, a

tool suite that provides one method to facilitate this technique. This chapter provides a

comprehensive presentation of both of these options. These two parts are covered in detail

in this chapter.

Tang et al. (2011). a description of the needs as well as the architecture's design It is

especially important to keep this in mind throughout the design phase, which is when both

the requirements and the architectural design are simultaneously developing. There may be

disagreements and inconsistencies about the guidelines. There are a lot of reasons for this,

one of which is that stakeholders do not have current knowledge of each other's work,

which stops them from totally appreciating potential problems and inconsistencies. This is

only one of the factors that contributes to this situation. Since specifications are typically

written in a natural language, it is difficult to automatically track related information. This

makes it difficult to find information. Additionally, this makes it harder to track down

material that is connected. With the intention of resolving this issue, the goal of this

chapter is to provide a general-purpose ontology that we have developed. We give an

implementation of a semantic wiki that enables the definition of architecture design in

addition to allowing for the traceability of requirements that are constantly growing.

McGregor et al. (2007). The Architecture Expert (ArchE), a tool for software architecture

design, is currently being manufactured by the Software Engineering Institute (SEI).

ArchE is now being manufactured. Not only does it include information about quality

qualities, but it also connects the design of architectural components to the fulfilment of

 ISSN: 2320-0294 Impact Factor: 6.765

146 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

standards for those traits. Learn how a graduate-level software architecture course at

Clemson University made use of ArchE in this in-depth study. Experts in the subject

served as the course instructors. This lecture delves into a wide range of topics, including

ArchE's roles as a construction tool and an educational tool for the built environment.

While the students did not approve of ArchE's immaturity, they were generally supportive

of its usage. On top of that, the teacher was enthusiastic about using ArchE in the

classroom.

Bass et al. (2004). In Lancaster, United Kingdom, on March 21, 2004, there was a

workshop that was held on the subject of Aspect-Oriented Requirements Engineering and

Architecture Design. The schedule consisted of both a presentation session and working

sessions for participants to participate in. Through the course of the working sessions,

particular topics that were associated with the early aspects were discussed. The primary

purpose of the workshop was to focus on the challenges that are associated with the

establishment of methodical software development processes when it comes to factors that

are present at an early stage in the software life cycle. Additionally, the workshop aimed to

investigate the possibility of the methodologies and techniques that were presented being

scaled up to industrial applications.

Juranić et al. (2019). With the complexity of engineering operations rising at an alarming

rate, it is becoming more clear that software assistance for design team communication and

improved control of design process dynamics are necessities, especially in highly

important scenarios. In cases where the result is really important, this is particularly the

case. Therefore, this study aims to present a novel approach that makes use of a set of

coloured Petri Nets (CPNs) to facilitate the practical implementation of design activities

ontology. In order to do this, taxonomy components must be instantiated at the same time

as rules and linkages must be modelled. Three case studies addressing designer

cooperation and an in-depth investigation of several long-term development projects

executed by a big industrial organisation formed the basis for the presented approach.

Problems in achieving interoperability between ontology models and design assistance

systems are the primary emphasis of this research. The primary goal of this effort is to

streamline the process of integrating ontology models into business operations. In a team

setting, the proposed method may pave the way for the instantaneous revision and

dissemination of design documents. This has tremendous promise.

McDonnell, J. (2012). This paper will examine a conversation that occurred between two

seasoned software engineers as they brainstormed potential features and functions for a

new software programme. This interaction occurred while the designers were working on

the app's development. How designers maintain a productive design process despite

uncertainties and ambiguities regarding the brief and disagreements regarding design

elements is the focus of this study, which pays attention to the conversational strategies

that manifest the 'web of moves' (Schon, 1985) that characterises expert design behaviour.

Paying close attention to them does this. The purpose of this research is to examine how

hesitancy can pave the way for productive teamwork and to highlight the conversational

 ISSN: 2320-0294 Impact Factor: 6.765

147 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

strategies used to make room for differing opinions. In order to capture and accept

arguments on how design goals need to be satisfied, there is a specific emphasis on both

explicitly mentioning disagreement and using technical language terminology. The work

adds to our understanding of the nuanced conversational processes that foster great design

collaboration by drawing attention to the need of recording events that benefit the

collaboration itself. Furthermore, the study adds to our knowledge of these two processes.

Babar et al. (2007). The following is a description of a tool that may be utilised for the

purpose of managing architectural comprehension and reasoning. Providing support for a

framework that enables the gathering and utilisation of architectural information was the

primary objective behind the development of the tool, which was created with the intention

of strengthening the architecture process. The fundamental architectural components of the

tool as well as its functionality are going to be explored within the confines of this article.

Additionally, the article provides examples of how the tool may be utilised to assist well-

known architectural design and research approaches. These examples are included in the

paper.

RESEARCH METHODOLOGY

In comparison to other forms of architecture, service-oriented architecture often

necessitates a greater level of architectural design quality. The objective of system testing

is to ensure that any changes made to the architectural design will not have an effect on the

functionality that has been described for the design. This is the goal of system testing.

Through the utilisation of test cases, the tester is able to assess the level of quality that is

present in the architectural design. It is possible that the procedure of carrying out all of the

test cases will be challenging and time consuming. As a result, automated testing is utilised

in order to get beyond these limitations imposed by the system. Through the utilisation of

automated testing, the quality of a particular application software solution is confirmed.

Automated testing is performed with the purpose of determining the proportion of test

cases that include mistakes. Last but not least, the improved test cases result in a more

positive conclusion for the testing process.

DATA ANALYSIS

The main focus of the methodology known as Service-Oriented Software Architecture

(SOSA) is the creation of service-oriented reusable services. This approach is used to

construct software architecture. Typically, different service providers handle these tasks.

Since composition is very similar to component-based software architecture design, it is

considered to be an element of SOA. For this reason, composition is an integral part of

SOA (service-oriented architecture).

The goal of software quality evaluation is to determine the efficiency of application

software. The term "software evaluation process" might describe this assessment as well.

When evaluating the quality of application software, a wide range of quality metrics are

used. This document presents a few of these measures. The two most common measures

 ISSN: 2320-0294 Impact Factor: 6.765

148 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

used to evaluate software are its usability and its portability. The quality components are

evaluated using these two measures. The metrics used in this process include the number

of errors, the time it takes to run, the time it takes to finish the work, and the time spent on

the task itself.

SERVICE DESIGN ESSENTIALS

Using Service Orientation Design Principles (SODP) to construct the solution logic of

services that are housed within service-oriented architectures (SOAs) is something that has

been recommended as a potential course of action. It is possible to employ any particular

design paradigm as the basis for the development of software in order to get superior

outcomes. When it comes to SOA, initial analysis of a significant nature is necessary in the

majority of situations. Consequently, there is a risk that a service-oriented architecture that

is built without actual processes would fail. This is because of the fact that this is the case.

The path towards service-oriented architecture (SOA) would be a good transition that

delivers on the benefits that were promised when it was adopted, and it would be helpful to

design a set of rules in order to assure that this change would take place.

SODP is the application of these design principles that creates technology independent

software. These design principles serve as a guideline for identifying and evaluating the

software.

System architecture

When it comes to software development, the Service-Oriented Architecture (SOA) solution

design pattern is a process that involves evaluating and validating the public interfaces in

order to create a system that is capable of delivering service to either an end user or

another service. The usability of the software may be reviewed with the aid of a range of

metrics, such as the completed tasks, the amount of time spent on tasks (use time), the

number of mistakes, and the satisfaction ratings. This evaluation can be carried out with

the assistance of a process that makes use of six sigma approaches. Moreover, the matrix

technique may be utilised to assess the program's portability, which is a significant asset.

 ISSN: 2320-0294 Impact Factor: 6.765

149 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

Figure 1 System Architecture Diagram

Algorithm Performance Evaluation

In this section, we will cover the performance evaluation of the proposed Binary PSO

algorithm, as well as the comparison of the recommended algorithm to the Genetic

algorithm (GA) that is already in use. In order to effectively implement the system that is

being proposed, an object-oriented programming language is utilised. An instrument that is

employed for the goal of discovering the connections that are present between the classes

is referred to as a bespoke source analyzer. Let us take into consideration two projects in

order to evaluate the suggested technique in software clustering. These projects are as

follows: Along with Marvin, Java2HTML A detailed explanation of the recommended

classes and the connections between them can be found in Table 4.1. Additionally, the

explanation is broken down into its component parts.

Table 1: Classes and their relationships

project Classes Relationships

Aggregation Generalization Association Dependency

Java2HTML 43 21 5 22 11

Marvin 27 23 8 5 13

For the purpose of the evaluation, the two factors that are taken into consideration are the

amount of time that is spent computing and the quality of the architecture.

Table 2 has a table that contains a list of the parameters that were used for the experimental

evaluation. It was decided to make some adjustments to the parameters in order to improve

the results and acquire a more in-depth understanding of the model.

 ISSN: 2320-0294 Impact Factor: 6.765

150 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

Table 2: Parameter setting for the algorithm

Parameter Binary PSO GA

Population size 200 200

Termination criteria MQ=1 MQ=1

No. of clusters 3 3

Java2 HTML: In order to evaluate the performance of each system with regard to the

amount of time required for calculation and the quality of the design, the Binary PSO and

GA algorithms were utilised.

Quality of the Solution: Figure 2 is a table that illustrates a comparison of the quality of

the solutions that are created by two different algorithms, namely Binary PSO and GA. The

table depicts a comparison of the quality of the solutions provided by both algorithms. The

better fitness function value is a measurement that is employed in the process of evaluating

the quality of the solution (also known as the solution quality evaluation). If we compare

the performance of the GA technique to the graph of the fitness function of the Binary PSO

algorithm, we find that the performance of the GA method is much inferior than the

performance of the Binary PSO algorithm.

Figure2 : Fitness function Vs Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

Binary PSO GA

 ISSN: 2320-0294 Impact Factor: 6.765

151 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

CONCLUSION

There is a growing need for the creation of a variety of apps that are related to service as a

result of the increasing prevalence of technology in a wide range of applications being

utilised in day-to-day life. As a consequence of this, service-oriented design in software

has evolved into an exciting research topic within the realm of information and culture. An

efficient software architecture model that is based on software design and a pattern that is

based on Service Oriented Architecture (SOA) was the objective of this research project.

The quality metrics were the major focus of attention during the course of this

investigation. In terms of the overall effectiveness of the architectural model and the

quality of the building itself, the plan that was provided ended up being more successful

than the other options. The primary objective of this thesis is to devote its attention to the

investigation of service-oriented architecture and the open difficulties that it poses with

regard to the quality of software, including usability and portability. It has been suggested

that it might be beneficial to use a Hybrid Particle Swarm optimisation approach in order

to test case optimisation. In addition, the concepts of six sigma are employed in order to

compute the quality of a service-oriented architectural design model by utilising software

quality criteria along the lines of usability and portability. The framework for applications

that are built on service and application architecture provides support for two extra

elements of service quality: availability and performance. These features are considered to

be additional aspects of service quality. The optimisation of test cases has been achieved

by the application of the genetic algorithm in conjunction with hybrid particle swarm

optimisation. In the context of optimisation, the high-performance swarm optimisation

(HPSO) approach is a technique that incorporates the use of both the concept of particle

swarm optimisation and the genetic algorithm.

REFERENCE

[1] Capilla, R., Jansen, A., Tang, A., Avgeriou, P., & Babar, M. A. (2016). 10 years of

software architecture knowledge management: Practice and future. Journal of

Systems and Software, 116, 191-205.

[2] Tang, A., Liang, P., Clerc, V., & van Vliet, H. (2011). Supporting coevolving

architectural requirements and design through traceability and reasoning. Relating

Software Requiremens and Software Architecture.

[3] Liang, P., Jansen, A., & Avgeriou, P. (2010). Collaborative software architecting

through knowledge sharing. Collaborative Software Engineering, 343-367.

[4] McGregor, J. D., Bachman, F., Bass, L., Bianco, P., & Klein, M. (2007, July).

Using an architecture reasoning tool to teach software architecture. In 20th

Conference on Software Engineering Education & Training (CSEET'07) (pp. 275-

282). IEEE.

 ISSN: 2320-0294 Impact Factor: 6.765

152 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

[5] Mangalaraj, G., Nerur, S., Mahapatra, R., & Price, K. H. (2014). Distributed

cognition in software design: An experimental investigation of the role of design

patterns and collaboration. MIS Quarterly, 38(1), 249-274.

[6] López, C., Codocedo, V., Astudillo, H., & Cysneiros, L. M. (2012). Bridging the

gap between software architecture rationale formalisms and actual architecture

documents: An ontology-driven approach. Science of Computer Programming,

77(1), 66-80.

[7] Bass, L., Klein, M., & Northrop, L. (2004). Identifying aspects using architectural

reasoning. Early Aspects: Aspect-Oriented Requirements Engineering and

Architecture Design, 51.

[8] Tang, A., Avgeriou, P., Jansen, A., Capilla, R., & Babar, M. A. (2010). A

comparative study of architecture knowledge management tools. Journal of

Systems and Software, 83(3), 352-370.

[9] Mohsin, A., & Janjua, N. K. (2018). A review and future directions of SOA-based

software architecture modeling approaches for System of Systems. Service

Oriented Computing and Applications, 12(3-4), 183-200.

[10] Dobrica, L., & Niemela, E. (2002). A survey on software architecture analysis

methods. IEEE Transactions on software Engineering, 28(7), 638-653.

[11] Olaf Zimmermann, Jana Koehler, Frank Leymann, Ronny Polley and Nelly

Schuster.(2009),"Managing Architectural Decision Models with Dependency

Relations, Integrity Constraints and Production Rules", The Journal of Systems and

Software, vol.82, pp.1249–1267.

[12] Peng Liang, Anton, Jansen, Paris Avgeriou, Antony Tang and Lai Xu.

(2011),"Advanced Quality Prediction Model for Software Architectural Knowledge

Sharing", The Journal of Systems and Software, Vol.84, pp.786–802.

[13] Babar, M. A. Zhu, L and Jeffery R. (2004), "A Framework for Classifying and

Comparing Software Architecture Evaluation Methods", Proceedings of the

International Conferences of the Agent oriented Software Engineering Conference,

Portugal, pp. 309-318.

