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Abstract: Examining the mathematical modelling of partial differential equation solutions 

with physical implications was the goal of this effort. We specifically examined the 

homogeneous one-dimensional wave solution's well-posedness and consistency. The 

method of change of variable was used to obtain the general solution of the wave equation, 

and this general solution ultimately led to the d'Alembert's formula, which is the only 

solution to the problem. Next, we demonstrate the existence, uniqueness, and stability of 

the d'Alembert's formula. After that, we analyzed the results using the answer we had 

acquired, displayed the behavior of our results in a table, and came to the conclusion that 

the idea of a well-posed issue is crucial in applied mathematics. 
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1. Introduction 

In general, it may be impossible or at the very least difficult to find the exact solution to 

partial differential equation problems. Partial differential equations were initially studied as 

a means of examining physical science models. Physical rules like momentum, 

conservation laws, balancing forces (Newton's law), and others are the usual source of 

PDEs (Strauss, 2008). This paper derives the string's equation of motion, which takes the 

form of a second-order partial differential equation, under specific assumptions. The one-

dimensional wave equation, or governing partial differential equation, depicts the 

transverse vibration of an elastic string (King and Billingham, 2000).The analytical 

solution has been obtained using method of change of variable. The solution of wave 

equation was one of the major mathematical problems of the mid eighteenth century. The 

wave equation was first derived and studied by D'Alembert in 1746. He introduced the one 

dimensional wave equation 

∂2𝑢

∂𝑡2
− 𝑐2

∂2𝑢

∂𝑥2
= 0 
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The wave equation stood then generalized to 2 and 3 dimensions, i.e. 

∂2𝑢(𝑥, 𝑡)

∂𝑡2
= Δ𝑢(𝑥, 𝑡) 

Where 

Δ = ∑𝑖−1
3  

∂2

∂𝑥𝑖
2 

The wave equation, which describes the propagation of many waves, including sound and 

water waves, is a second-order linear hyperbolic PDE. It appears in a variety of disciplines, 

including electromagnetics, fluid dynamics, and acoustics (Sajjadi 2008). A partial 

derivative of the independent variable, which is an unknown function in multiple variables, 

is found in a partial differential equation (PDE).  

∂𝑢

∂𝑥
= 𝑢𝑥 ,

∂𝑢

∂𝑦
= 𝑢𝑦&

∂𝑢

∂𝑡
= 𝑢𝑡  

We can inscribe the overall first order PDE for 𝑢(𝑥, 𝑡) as 

𝐹 𝑥, 𝑡, 𝑢 𝑥, 𝑡 , 𝑢 𝑥, 𝑡 , 𝑢 𝑥, 𝑡  = 𝐹 𝑥, 𝑡, 𝑢, 𝑢𝑥 , 𝑢𝑡 = 0……… . . (1)  

Although one can study PDEs with many independent variables as one wish, but in this 

research work we will be primarily concerned with PDEs in two independent variables. 

 

2. Statement of the problem 

The main focus of this research project is on the good qualities and consequences of a 

given partial differential equation solution. The homogeneous one-dimensional wave 

equation in particular piques our interest in the mathematical modelling of the consistency 

and well-posedness of the solution or solutions to certain PDEs. Some function u=u(x,y,z,t) 

will measure different physical quantities. This may rely on all temporal variables, a subset 

of them, or none (Guo, 2009). The shortened notation that follows will be used to represent 

the partial derivatives of u: 

𝑢𝑥 =
∂𝑢

∂𝑦
, 𝑢𝑥𝑥 =

∂2𝑢

∂𝑥2
, 𝑢𝑥𝑦 =

∂2𝑢

∂𝑥 ∂𝑦
, 𝑢𝑥𝑡 =

∂2𝑢

∂𝑥 ∂𝑡
, 𝑢𝑡 =

∂𝑢

∂𝑡
 etc.  

 

3. METHODS 

We will look at a specific kind of problem related to partial differential equations that are 

hyperbolically linear. This issue will be discussed in relation to the homogeneous one-

dimensional wave equation of the type 

∂2𝑢

∂𝑡2
− 𝑐2

∂2𝑢

∂𝑥2
= 0 
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Where C is a constant and the independent variables are x and t. undoubtedly, one of the 

most significant classical equations in mathematical physics is the wave equation. There 

are numerous physical applications for the wave equation, ranging from sound waves in air 

to magnetic waves in the Sun's atmosphere. On the other hand, waves on a stretched elastic 

thread are the easiest systems to picture and explain. The string is initially horizontal and 

has two fixed ends, let's say a left end (L) and a right end (R): When we shake the string 

from end L onward, we see a wave propagate across the string. The goal is to attempt to 

calculate the vertical displacement of the string from the X-axis, u(x,t), as a function of 

timet and location X: In other words, the displacement from equilibrium at Position X and 

time t is represented as u(x,t): A little portion of the string's displacement between Points P 

and Q is displayed in;Where 

 

 𝜃(𝑥, 𝑡) is the angle amid the string and a straight line at location𝑥 and time 𝑡 

 𝑇(𝑥, 𝑡) is the tautness in the string at location𝑥 and time 𝑡; 

 𝜌(𝑥) is the mass density of the thread at position 𝑥 : 

To originate the wave equation we necessity to make particular simplifying expectations: 

(1) The density of the string, 𝜌 is continuous so that the mass of the string amid𝑃 and 𝑄 is 

simply 𝜌periods the length of the string among𝑃 and 𝑄 where the distance of the string is 

Δ𝑠agreed by 

Δ𝑠 =  (Δ𝑥)2 + (Δ𝑢)2 = Δ𝑥 1 +  
Δ𝑢

Δ𝑥
 

2

≈ Δ𝑥  
∂𝑢

∂𝑥
 

2

 

(2) The displacement, 𝑢(𝑥, 𝑡) and its derivatives are assumed small so that 

Δ𝑠 ≈ Δ𝑥 

and the mass of the helping of the thread is 

𝜌Δ𝑥 
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(3) The solitary forces acting on this helping of the cordstand the tensions 𝑇(𝑥, 𝑡) at 𝑃 and 

𝑇(𝑥 + Δ𝑥, 𝑡)at 𝑄. The gravitational force stands neglected. 

(4) We have a little string element that only moves vertically. Thus, there must be no net 

horizontal force acting on it. Subsequently, we examine the forces operating on the 

standard string segment depicted previously. These forces consist of: 

(i) Tension heaving to the right, which has scale𝑇(𝑥 + Δ𝑥, 𝑡) and entertainments at an 

angle 𝜃(𝑥 + Δ𝑥, 𝑡)upstairs the horizontal. 

(ii) Tension drawing to the left, which consumesmagnitude 𝑇(𝑥, 𝑡), and entertainments at 

an angle 𝜃(𝑥, 𝑡), upstairs the horizontal. 

We may now separate the forces into their vertical and horizontal components.- 

Horizontal: The small string's net horizontal force is 

𝑇(𝑥 + Δ𝑥, 𝑡)cos⁡𝜃(𝑥 + Δ𝑥, 𝑡) − 𝑇(𝑥, 𝑡)cos⁡𝜃(𝑥, 𝑡). 

we must need 

𝑇(𝑥, 𝑡)cos⁡𝜃(𝑥, 𝑡) = 𝑇(𝑥 + Δ𝑥, 𝑡)cos⁡𝜃(𝑥 + Δ𝑥, 𝑡) = 𝑇. 

Vertical:  At Ptension force stands−𝑇(𝑥, 𝑡)sin⁡𝜃(𝑥, 𝑡)somewhere as at 𝑄 the 

Force is 𝑇(𝑥 + Δ𝑥, 𝑡)sin⁡𝜃(𝑥 + Δ𝑥, 𝑡).  

Bounces 

𝜌Δ𝑥
∂2𝑢

∂𝑡2
= 𝑇(𝑥 + Δ𝑥, 𝑡)sin⁡𝜃(𝑥 + Δ𝑥, 𝑡) − 𝑇(𝑥, 𝑡)sin⁡𝜃(𝑥, 𝑡).

𝜌

𝜌
Δ𝑥

∂2𝑢

∂𝑡2
=
𝑇(𝑥 + Δ𝑥, 𝑡)sin⁡𝜃(𝑥 + Δ𝑥, 𝑡)

𝑇(𝑥 + Δ𝑥, 𝑡)sin⁡𝜃(𝑥 + Δ𝑥, 𝑡)
= −

𝑇(𝑥, 𝑡)sin⁡𝜃(𝑥, 𝑡)

𝑇(𝑥, 𝑡)cos⁡𝜃(𝑥, 𝑡)

tan⁡𝜃(𝑥 + Δ𝑥, 𝑡) − tan⁡𝜃(𝑥, 𝑡)

 But 

tan⁡𝜃(𝑥, 𝑡) = lim
Δ𝑥→0

 
Δ𝑢

Δ𝑥
= 𝑢𝑥(𝑥, 𝑡).

 

Also, 

tan⁡𝜃(𝑥 + Δ𝑥, 𝑡) = 𝑢𝑥(𝑥 + Δ𝑥, 𝑡) 

𝜌

𝑇
Δ𝑥𝑢𝑡𝑡(𝑥, 𝑡) = 𝑢𝑥(𝑥 + Δ𝑥, 𝑡) − 𝑢𝑥(𝑥, 𝑡) 

Δ𝑥 → 0 

𝜌

𝑇
Δ𝑥𝑢𝑡𝑡(𝑥, 𝑡) = 𝑢𝑥𝑥 (𝑥, 𝑡)

 Or 

𝑢𝑡𝑡 (𝑥, 𝑡) = 𝑐2𝑢𝑥𝑥 (𝑥, 𝑡)

 Where 𝑐2 =
𝑇

𝜌
,

 

The transverse vibration of the string is represented by this PDE. It's also known as the 

one-dimensional wave equation. Over the complete real line, −∞ < 𝑥 < +∞ , we solve 
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the wave equation. Real-world physical conditions typically occur at fixed intervals. For 

two reasons, we can justify taking x on the entire real line. Without the complexities of 

boundary conditions, the most basic properties of the PDEs can be discovered with the 

greatest ease. 

utt = c2uxx for−∞ < 𝑥 < ∞, 𝑡 > 0 

𝑢(𝑥, 0) = 𝑓(𝑥)for−∞ < 𝑥 < ∞ …….(2) 

𝑢𝑡(𝑥, 0) = 𝑔(𝑥)for−∞ < 𝑥 < ∞…………(3) 

 

3.1 Solution via change of variable 

Since the equation is hyperbolic we present the novel variable 𝜀, 𝜂distinct by 

𝜀 = 𝑥 + 𝑐𝑡
𝜂 = 𝑥 − 𝑐𝑡

 

we have 

∂

∂𝑡
=

∂

∂𝜀
⋅
∂𝜀

∂𝜂
+

∂

∂𝜂
⋅
∂𝜂

∂𝑡

= 𝐶
∂

∂𝜀
+

∂

∂𝜂
(−𝐶)

 

𝐶  
∂

∂𝜀
−

∂

∂𝜂
  

So, 

∂2

∂𝑡2
= 𝐶  

∂

∂𝜀
−

∂

∂𝜂
 𝐶  

∂

∂𝜀
−

∂

∂𝜂
 

∂2

∂𝑡2
= 𝐶2  

∂

∂𝜀
−

∂

∂𝜂
  

∂

∂𝜀
−

∂

∂𝜂
 

∂2

∂𝑡2
= 𝐶2  

∂2

∂𝜀2
−

2∂2

∂𝜀 ∂𝜂
+

∂2

∂𝜂2
 

 

Likewise 

∂

∂𝑥
=

∂

∂𝜀
⋅
∂𝜀

∂𝑥
+

∂

∂𝜂
⋅
∂𝜂

∂𝑥
 

weneed 

∂

∂𝑥
=

∂

∂𝜀
⋅ 1 +

∂

∂𝜂
⋅ 1

∂

∂𝑥
=

∂

∂𝜀
+

∂

∂𝜂

 

So, 
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∂2

∂𝑥2
=  

∂

∂𝜀
+

∂

∂𝜂
  

∂

∂𝜀
+

∂

∂𝜂
 

=
∂2

∂𝜀2
+

2∂2

∂𝜀 ∂𝜂
+

∂2

∂𝜂2

 

Let transform 𝑥, 𝑡 → 𝜀, 𝜂s.t. 

𝑈(𝑥, 𝑡) = 𝑊(𝜀, 𝜂) 

𝑈𝑡𝑡 − 𝐶2𝑈𝑥𝑥 = 0 

Becomes 

𝐶2 𝑊𝜀ℰ − 2𝑊𝜀𝜂 + 𝑊𝜂𝜂  − 𝐶2 𝑊 + 2𝑊𝜀𝜂 + 𝑊𝜂𝜂  = 0 

⇒ −4𝐶2𝑊𝜀𝜂 = 0 

Thus 

⇒ 𝑊𝜀𝜂 = 0 

∂2𝑤

∂𝜀 ∂𝜂
= 0………………(4)  

By integrating equation (4) twice, the general solution can be found with ease. Let's first 

assume that you integrate with regard to E and observe that, in order to obtain, the 

integration constant needs to rely on η. 

∂𝑤

∂𝜂
= 𝐺(𝜂) 

Currently integrate with respect to 𝜂 and sign that the constant of mixing depends on 𝜀. 

𝑤 = ∫
0

𝜂
 𝐺(𝜂)𝑑𝜂 + 𝐹(𝜀) 

So 

∫
0

𝜂
 𝐺(𝜂)𝑑𝜂 = 𝐺(𝜂) 

So that 

𝑤 = 𝐺(𝜂) + 𝐹(𝜀) 

Remember that we transformed 

𝑈(𝑥, 𝑡) = 𝑤(𝜀, 𝜂) 

So 

𝑈(𝑥, 𝑡) = 𝐹(𝑥 + 𝑐𝑡) + 𝐺(𝑥 − 𝑐𝑡)………(5) 

This is the wave equation's general solution by d'Alembert, where f and g are arbitrary 

functions. In order to distinguish a specific physical solution from the general solution (5), 

we next take into consideration a few beginning conditions in addition to the wave 

equation (1). Since the equation is of second order in time t, we can consider two initial 

data points of the equation (1): f(x) and g(x), which are specified for the initial 
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displacement u(x,0) and the initial velocity ut (x,0), respectively. f and g are arbitrary 

functions of a single variable. In order to meet equation (1) above, we now need to 

calculate the functions F and G in the general equation (5). 

Given; 

𝑢(𝑥, 0) = 𝑓(𝑥)for−∞ < 𝑥 < ∞ 

𝑢𝑡(𝑥, 0) = 𝑔(𝑥)for−∞ < 𝑥 < ∞ 

put𝑡 = 0 in (5),  

𝑈(𝑥, 0) = 𝑓(𝑥) = 𝐹(𝑥) + 𝐺(𝑥) 

𝑈(𝑥, 0) = 𝐹(𝑥) + 𝐺(𝑥) = 𝑓(𝑥)……(6) 

put𝑡 = 0 to get 

𝑈𝑡(𝑥, 0) = 𝐶𝐹′(𝑥) + 𝐶𝐺 ′(𝑥) 

𝐶𝐹′(𝑥) − 𝐶𝐺 ′(𝑥) = 𝑔(𝑥) 

𝐶 𝐹′(𝑥) − 𝐺 ′(𝑥) =
𝑔(𝑥)

𝐶
…..(7) 

Integrating (ii) 

𝐹(𝑥) − 𝐺(𝑥) = ∫
0

𝑥
 
𝑔(𝑠)

𝐶
𝑑𝑠 + 𝑘………(8) 

Adding (i) and (ii) 

2𝐹(𝑥) = ∫
0

𝑥
 
𝑔(𝑠)

𝐶
𝑑𝑠 + 𝑘 + 𝑓(𝑥)………..(9) 

𝐹(𝑥) =
1

2
∫
𝐶

𝑥
 𝑔(𝑠)𝑑𝑠 +

𝑘

2
+
𝑓(𝑥)

2
 

Toowithdrawing (i) since (ii) yield 

2𝐺(𝑥) = −
1

𝑐
∫

0

𝑥
 𝑔(𝑠)𝑑𝑠 − 𝑘 + 𝑓(𝑥) 

𝐺(𝑥) = −
1

2𝑐
∫

0

𝑥
 𝑔(𝑠)𝑑𝑠 −

𝑘

2
+

𝑓(𝑥)

2
………..(10) 

Memory that 

𝑈(𝑥, 𝑡) = 𝐹(𝑥 + 𝑐𝑡) + 𝐺(𝑥 − 𝑐𝑡)………….(11) 

Therefore since (IV) 

𝐹(𝑥 + 𝑐𝑡) =
𝑓(𝑥 + 𝑐𝑡)

2
+

1

2𝑐
∫

0

𝑥+𝑐𝑡
 𝑔(𝑠)𝑑𝑠 +

𝑘

2
 

Besides 

𝐺(𝑥 − 𝑐𝑡) =
𝑓(𝑥−𝑐𝑡)

2
+

1

2𝑐
∫
𝑥−𝑐𝑡

0
 𝑔(𝑠)𝑑𝑠

𝑘

2
……….(12) 

Later, calculation (vi) and (vii) yield. 

𝑈(𝑥, 𝑡) = 𝑓(𝑥 + 𝑐𝑡) + 𝑓(𝑥 − 𝑐𝑡) +
1

2𝑐
∫
𝑥−𝑐𝑡

𝑥+𝑐𝑡
 𝑔(𝑠)𝑑𝑠…………..(13) 
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D'Alembert's formula for solving the aforementioned starting value problem is this. The 

solution is uniquely determined by the initial data f and g, as our derivation of d'Alembert's 

formula demonstrates that any solution of (1), (2), and (3) that is twice continuously 

differentiable must have the representation (13). Therefore, the special solution to (1), (2), 

and (3) is represented by d'Alembert's formula. 

 

3.2 Uniqueness of the Solution 

The energy function E(t) for the wave equation is defined in this part. It is demonstrated 

that energy is conserved for the Cauchy problems (1), (2), and (3), and we utilise this fact 

to prove that the solutions to the aforementioned Cauchy problems are unique.  

Assume for now that 

𝑢 = 𝑢(𝑥, 𝑡)………..(14) 

To be a fluid solution to the derivatives and the Cauchy issue 

 

𝑢𝑡(𝑥, 𝑡)and𝑢𝑥(𝑥, 𝑡) 

Are square integrable for each 𝑡 ≥ 0.  

𝐸(𝑡) = ∫
−∞

∞
   

1

2
𝑢𝑡

2 +
𝑐2

2
𝑢𝑥

2 𝑑𝑥……..(15) 

is finite; kinetic and potential energy combined make up E(t). The energy that could be 

𝑃𝐸(𝑡) = ∫
−∞

∞
 
𝐶2

2
𝑢𝑥

2𝑑𝑥………(16) 

Is the tension and kinetic energy combined to store energy in the string? 

 𝐾𝐸(𝑡) = ∫
−∞

∞
 
1

2
𝑢𝑡

2𝑑𝑥…..(17) 

Is the custom of 
1

2
𝑚𝑣2 in classical procedure of a rigid body through mass 𝑚 and velocity 

𝑣.Let us reproduce the PDE 

𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥………(18) 

by𝑢𝑡  and integrate by parts. 

Increasing 

𝑢𝑡𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥𝑢𝑡  

∫
−∞

∞
 𝑢𝑡𝑢𝑡𝑡𝑑𝑥 = ∫

−∞

∞
 𝑐2𝑢𝑥𝑥𝑢𝑡𝑑𝑥…….(19) 

Integrating by parts 

  
∞

−∞

 
∂

∂𝑡

𝑼𝑡
2

2
𝑑𝑥 =  𝑐2𝑢𝑥𝑢𝑡 −∞

+∞ − 𝑐2   
∞

−∞

 𝑢𝑥𝑢𝑥𝑡𝑑𝑥

= −𝑐2   
∞

−∞

 
∂

∂𝑡

𝑼𝑥
2

2
𝑑𝑥
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𝐸′(𝑡) =
𝑑

𝑑𝑡
∫  
∞

−∞
 

1

2
𝑢𝑡

2 +
𝑐2

2
𝑢𝑥

2 𝑑𝑥 = 0……….(20) 

Consequently, we have overall energy conservation: E(t)= constant, which allows us to 

infer 

𝐸(𝑡) = 𝐸(0) =
1

2
∫
−∞

∞
  𝜑(𝑥)2 + 𝑐2𝜙′(𝑥)2 𝑑𝑥, 𝑡 > 0…….(21) 

As we will describe later, this identity is a crucial instrument for the presence, regularity, 

and uniqueness of solutions. 

 

3.3 Uniqueness of Solution 

To prove uniqueness, we demonstration 

𝑢1 = 𝑢2……..(22) 

Let outline 

𝑢(𝑥, 𝑡) = 𝑢1(𝑥. 𝑡) − 𝑢2(𝑥, 𝑡)……….(23) 

Then 𝑢 satisfies the homogeneous wave equation, with zero initial data: 

𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 −∞ < 𝑥 < ∞………..(24) 

𝑢(𝑥, 0) = 0, 𝑢𝑡(𝑥, 0) = 0……………(25) 

Later𝐸(𝑡) = 𝐸(0) = 0 for this problematic, we obligate 

𝐸(𝑡) = ∫
−∞

∞
   

1

2
𝑢𝑡

2 +
𝑐2

2
𝑢𝑥

2 𝑑𝑥 = 0…….(26) 

Then 

𝑢𝑡 = 0, And 𝑢𝑥 = 0………….(27) 

𝑢(𝑥, 0) = 0, so the constant is zero. 

Later 

𝑢 = 𝑢1 − 𝑢2 = 0 

 

4. Result 

𝑈𝑡𝑡 − 25𝑈𝑥𝑥 = 0 −∞ < 𝑥 < ∞, 𝑡 > 0 

𝑈(𝑥, 0) = 𝑓(𝑥) − ∞ < 𝑥 < ∞, 

𝑈(𝑥, 0) = sin⁡𝑥 −∞ < 𝑥 < ∞, 

𝑈𝑡(𝑥, 0) = 0 −∞ < 𝑥 < ∞ 

Explanation 

Comparing through the standard wave equation 

𝑈𝑡𝑡 − 𝐶2𝑈𝑥𝑥 = 0 −∞ < 𝑥 < ∞, 𝑡 > 0……….(28) 

𝑈(𝑥, 0) = 𝑓(𝑥) − ∞ < 𝑥 < ∞, 

𝑈𝑡(𝑥, 0) = 𝑔(𝑥) − ∞ < 𝑥 < ∞ 

So from the above question 
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𝐶2 = 25 ⇒ 𝐶 = 5 

𝑓(𝑥) = sin⁡𝑥 

𝑔(𝑥) = 0 

Therefore, using 

𝑈(𝑥, 𝑡) =
1

2
[𝑓(𝑥 + 𝑐𝑡) + 𝑓(𝑥 − 𝑐𝑡)] +

1

2𝑐
∫
𝑥−𝑐𝑡

𝑥+𝑐𝑡
 𝑔(𝑥)𝑑𝑠……….(29) 

We obligate 

𝑈(𝑥, 𝑡) =
1

2
[sin⁡(𝑥 + 𝑐𝑡) + sin⁡(𝑥 − 𝑐𝑡)] +

1

2𝑐
∫
𝑥−𝑐𝑡

𝑥+𝑐𝑡
 0𝑑𝑠 

𝑈(𝑥, 𝑡) =
1

2
[sin⁡(𝑥 + 𝑐𝑡) + sin⁡(𝑥 − 𝑐𝑡)] + 0 

𝑈(𝑥, 𝑡) =
1

2
[sin⁡(𝑥 + 5𝑡) + sin⁡(𝑥 − 5𝑡)]………(30) 

Recall that 

sin⁡(𝐴 + 𝐵) + sin⁡(𝐴 − 𝐵) = 2sin⁡ 
𝐴+𝐵

2
 cos⁡ 

𝐴−𝐵

2
 ……….(31) 

Consequently, laying (2) keen on (1) yield 

𝑈(𝑥, 𝑡) =
1

2
 2sin⁡ 

𝑥−5𝑡+𝑥−5𝑡

2
 cos⁡ 

𝑥+5𝑡−𝑥+5𝑡

2
  ………….(32) 

Therefore 

𝑈(𝑥, 𝑡) = sin⁡𝑥cos⁡5𝑡……………(33) 

 

Table 1: viewing the values of 𝒖(𝒙, 𝒕) at changing𝒙 and 𝒕 

 

S/N 𝑢(𝑥, 𝑡) 𝑥 𝑡 

1 0.0771 50 0 

2 0.1710 100 2 

3 0.2432 150 4 

4 0.2962 200 6 

5 0.3237 250 8 

6 0.3214 300 10 

7 0.2868 350 12 

8 0.2198 400 14 

9 0.1228 450 16 

10 0.000 500 18 
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Table 2: Viewing result of 𝒖(𝒙, 𝒕) at immovable𝒙 and varying 𝒕 

 

S/N 𝑢(𝑥, 𝑡) Fixed 𝑥 Varying 𝑡 

1 0.0872 5 0 

2 0.0859  2 

3 0.0819  4 

4 0.0755  6 

5 0.0668  8 

 

Table 3: Viewing result of 𝒖(𝒙, 𝒕) at fixed 𝒕 and varying 𝒙 

 

S/N 𝑢(𝑥, 𝑡) Varying 𝑥 Fixed 𝑡 

1 0.0872 5 0 

2 0.1736 10  

3 0.2588 15  

4 0.3420 20  

5 0.4226 25  

6 0.5000 30  

7 0.5736 35  

 

5. Conclusion 

In conclusion, the concept of a well-posed issue holds significance in the field of applied 

mathematics. Even if the well-posed issues are nearly entirely covered by the classical 

theory of partial differential equations, ill-posed problems can nevertheless be fascinating 

from a mathematical and scientific standpoint. 
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