International Journal of Engineering, Science and Mathematics Vol. 13 Issue 4, April 2024,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: <u>http://www.ijesm.co.in</u>, Email: ijesmj@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &

Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

DETERMINATION OF THE WATER WAY FOR BRIDGE AT KUDALASANGAM - ADAVIHAL ACROSS MALAPRBHA RIVER IN KARNATAKA USING GIS APPLICATION

Basappa Meti^a, Gururaj Bandihal^b

^aAssociate Professor, Govt. Engineering College Haveri 581110, Karnataka ^bAssistant Professor, Department of Civil Engg, BasaveshwarEngineering College, Bagalkot Email: <u>bsmeti@gmail.com</u>, <u>ghbandihal@gmail.com</u>

ABSTRACT:

Floods are a recurrent phenomenon, which cause huge loss of lives and damage to livelihood systems, property, infrastructure and public utilities. This can be attributed to many reasons including a steep increase in population, rapid urbanization growing developmental. India is highly vulnerable to floods. The frequency of major flood is more than once in five years. Floods have been a recurrent phenomena on which brings settlements, misery to human lives and losses to infrastructure and public utilities.

The Roads and Barrages are one of the main communication systems of Human civilization which requires proper planning design and executions. In recent year 2019, Malaprbha River has experienced heavy flood which causes submergence of Hostorical place Kudalasangam Temple surroundings area with Crop land and Roads due to construction of Bridge at Kudalasangam - Adavihal across Malaprbha river near Adavihal.

An attempt is made is this study to ascertain the flood prone area surrounding the Bridge and probable causes of flood in Malaprbha River using Arc GIS and related software to find the adequacy of the bridge structure to safely pass the flood water.

Key words: *Key words: Arc GIS, Flood, Inundation, Water way* **1.0 Introduction:**

The Malaprabha River originates from the Western Ghats at an altitude of 792 m MSL at Kanakumbi in Khanapur taluk of Belgaum District. It runs for a distance of 304 km before joining the Krishna River at an altitude of 488 meters near Kudalasangam in Bagalakote district. Its basin is approximately triangular in shape, located in the extreme western part of the Krishna basin.

The Kudalsangam temple is the famous historical place which is located in the confluence of Malaprbha river with Krishna The Aykya Mantapa of Lord Basavewar

International Journal of Engineering, Science and Mathematics http://www.ijesm.co.in, Email: ijesmj@gmail.com

and Neelamma temple are located just at the confluence point. The villagers from right bank of Malaprabha river have to travel via NH-50 to visit Kudalasangam, Fig.1. Malaprabha river line from Belagal bridge to Krishna river (Google earth image)

The bridge site is located immediately upstream of its Confluence with Krishna River and in the back waters of Narayanapura Dam. The present connectivity of Kudalsangam is from NH-50 (earlier NH-13). The place can be approached after crossing Malaprabha Bridge near Belagal on NH-50. This is quite a long route for pilgrims from districts located on the northern side of Krishna River. The length of this route to Kudalsangam from Thangadagi Bridge via Dhanur, Hungund, Belgal and Khaigal is about 36.00 Km.

In order to provide a shorter route to the pilgrims on the northern side of Krishna River, it is proposed to construct a new high level bridge across Malaprabha, immediately upstream of its confluence with Krishna River. The length of this route to Kudalsangam from Thangadagi Bridge via Adavihal village will be about 5 Km. After the confluence a major bridge across Krishna River near Thangadagi has been built. This is located about 5 Km downstream of the Adavihal bridge.

Fig.2 Location of Malaprabha Riverin Krishna Basin

The major bridges located on the upstream in the stretch of natural water way are, near Belagal on NH-50, near Kamatagi on Hunagund- Bagalkote road, near Battadakal on SH-14, Near Cholachagudda on NH-367, near Holealur on Gadag-Bagalkote road.

2.0 Objectives

To ascertain the causes of flood at the study area, to assess the causes of silt accumulate and estimate the quantity of silt in between bridge piers To create area inundation map of Adavihal - Kudalasangam catchment at the time of flood 2019

3.0 Methodology

3.1 Bridge Details

The nearby village Adavihal at RL 498.00 m on the right bank and Kudalsangam at RL 499.00 m on the left bank is above the back water level of Narayanpur dam. Thus the backwater level of Narayanpur dam at the proposed bridge site is estimated to be 497.230 m with a free board of 0.5 m head loss through the bridge

is 0.22m and top of pier will be at 496.450 m. With the depth of girder will be 2.0 m and slab thickness will be 0.30 the FRL of bridge will be 498.750 m. Hence it is proposed to keep FRL of bridge at RL. 499.000m this will also help to match the level on left bank side road level leading to Kudalsangam. Approaches are proposed with Embankment on either side with aside slope of 2:1 and with crash barrier, where the length of embankment is 3m.

Latitude	16° 10' 46"		Ĭ
	Ν		
Longitude	74° 40' 16"	Approaches on	a)Towards Kudala sangam
	E	either side of	102.79 m
Length of bridge	735 m	bridge	b)Towards Adavihal 662.21m
Maximum water	492.252 m	Maximum height	8.60 m
level (HFL)		of embankment	
Low water level	490.607m	Horizontal	51.00 m
		clearance	
Vent way	702 m	Slope of	2:1
		embankment	
Vertical	7.00 m	Type of	Roof truss with RCC Deck slab
clearance		superstructure	
No. of piers	13	Type of bearings	POT cum PTFE bearings under
			each girder
Waterway	735 m	Type of	Twin circular pier with capping
		substructure	beam
Soffit Level	499.252 m	Dia of pier	1.50m
Low water level	490.607m	Type of foundation	Pile foundation with bored cast
			in situ piles
Horizontal	51.00 m	Dia of pile	1.20 m
clearance			
Water way	735 m	Type of pile	Bearing Pile
Soffit level	499.252 m		IRC: 5 – 1999, IRC:6-2010,
			IRC: 78-2000, IRC:86, IRC:
		Reference codes	106, IRC:86, IRC: 106, IRC:112
			- 2011, IS:456:2000, SP-16
			DESIGN AIDSTO IS:456

Table 1 General features	of existing bridge	(DPR of bridge)
---------------------------------	--------------------	-----------------

3.2 Data collected from bridge site

Table 2 Daily inflows and out flow (Cusecs) details at bridge site

July 2015

Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Water level	514.7	514.7	514.7	514.8	514.9	514.9	514.8	514.8	514.7	514.7	514.6	514.5	514.4	514.1	514.4
Inflow	2710	0	0	10175	10175	0	0	0	0	0	0	0	0	0	0
Out flow	2710	0	0	0	0	100	6110	5691	475	475	675	675	675	675	675

Date	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Water level	514.30	514.20	514.12	513.95	513.82	513.75	513.70	513.75	514.00	513.75	513.80	513.75	514.20	514.45	514.80	514.90
Inflow	0	0	0	0	0	12171	8919	15590	10675	10675	15055	28196	28976	34264	45366	20850
Out flow	675	5675	5675	15675	15675	15675	15675	10675	10675	10675	10675	10675	10675	10675	10675	10675

Aug 2017

Date	1	2	3	4	5	6	7	8	9	10	11	12**	13	14	15
Water level	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60
Inflow	35521	20849	21001	21003	21003	21003	11836	6003	3086	1003	1003	6003	6003	5403	5403
Out flow	18448	20849	21003	21003	21003	21003	11836	6003	3086	1003	1003	6003	6003	5403	5403

Date	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Water level	519.60	519.60	519.60	519.60	519.45	519.27	519.22	519.22	519.22	519.22	519.25	519.30	519.35	519.40	519.45	519.48
Inflow	6003	3003	3003	3003	0	0	0	513	513	513	6871	17886	20792	20803	27885	35224
Out flow	6003	3003	3003	3003	29499	35000	7291	513	513	513	1003	8106	11023	11023	18105	29356

		Sept 2017													
Date	1	2	3	4	5	6	7	8	9	10	11	12**	13	14	15
Water level	519.59	519.59	519.59	519.59	519.59	519.59	519.59	519.59	519.59	519.59	519.59	519.59	519.59	519.59	519.59
Inflow	56879	53333	32730	19023	19023	13106	6023	6023	11023	11023	11023	11023	12023	10523	25314
Out flow	34773	53333	32730	19023	19023	13106	6023	6023	6023	11023	11023	11023	12023	10523	25314

Date	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Water level	519.59	519.59	519.59	519.59	519.59	519.59	519.57	519.51	519.59	519.58	519.58	519.58	519.60	519.60	519.60
Inflow	45000	33413	36746	25080	25080	47669	99822	121316	88497	52535	41250	23217	13580	16804	431413
Out flow	45000	33413	36746	25080	25080	47669	106824	133572	84435	54560	41250	18333	13580	16804	43413

	(Oct 2017													
Date	1	2	3	4	5	6	7	8	9	10	11	12**	13	14	15
Water level	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60
Inflow	54089	36582	27788	267.384	217871	18080	14080	17955	44246	25080	35080	24038	45080	30080	23830
Out flow	54089	36582	27788	35080	21871	18080	14080	17955	44246	25080	35080	24038	45080	30080	23830

Date	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Water level	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60	519.60
Inflow	78363	90125	66351	29246	13080	13925	15080	14037	13080	13080	9412	5080	5080	5080	5080	5080
Out flow	78363	90125	66351	29246	13080	13925	15080	14037	13080	13080	9412	5080	5080	5080	5080	5080

	Α	ug 2018																		
Date	1	2	3	4	5	6		7	8	3	9		10	1	1	12**	13		14	15
Water level	519.520	519.6	519.60	519.6	5 519.6	00 519	.6	519.6	519	9.6	519.	600 5 ⁻	19.600	519	.600 5	19.600	519.600	5	19.600	519.580
Inflow	17162	23806	12900	17567	7 2748	32 248	57 2	28608	459	900	309	00 3	0900	30	900	30900	35900	5	54920	95136
Out flow	3400	6733	12900	17566	6 2748	32 248	57 2	28608	459	900	309	00 3	0900	30	900	30900	35900	5	54920	100020
							l		1											
Date	16	17	18	19	20	21	22		23		24	25		26	27	28	29		30	31
Water level	519.5	519.4	519.4	519.4	519.5	519.4	519.	4	519.3	51	9.30	519.3	5	19.6	519.6	519.	6 519.	58	519.6	519.5
Inflow (m ³ /s)	103393	127216	139703	126814	128438	154095	1631	60	145566	12	8770	124914	12	3550	126029	9100	0 6409	95	111741	136100
Out flow (m ³ /s)	119563	142865	143615	128770	122569	159963	16316	60	163160	12	8770	93630	10	5656	136099	9090	0 6409	95	115803	136100
. ,	0	ont 2010						·								·				•
Date	1	2	3	4	5	6		7	8		9		10	11	1	12**	13		14	15
Water	519.50	519.600	519.600	519.600	519.60	0 519.6	00 51	9.600	519.6	600	519.6	00 51	9.600	519.0	600 51	9.600	519.600	51	9.590	519.580
Inflow	87805	55762	28399	40900	28817	30900) 23	400	2090	0	18900	0 18	900	1840	0 10	108	900	0	(0
Out flow	87805	34707	28399	40900	28817	30900) 23	400	2089	9	18900	0 18	900	1840	0 10)108	900	23	36 2	2336
Date	16	17	18	19	20	21		22	23	3	24	t I	25	2	6	27	28		29	30
Water level	519.530	519.460	519.390) 519.32	0 519.2	50 519.	180 51	19.110) 519.	040	518.9	970 51	8.900	518	.830 5	18.760	518.760	51	18.760	518.710
Inflow	0	0	0	0	0	0		0	0)	0		0	()	0	12624	1	2624	3573
Out flow	2336	13942	13692	13680) 1369	2 135	08 1	3171	131	71	131	71 1	3171	126	524 ·	12624	12624	1	2624	12624
	h	ılv 2019						_		_	_			_				_		_
Date	1	2	3	4	5	6		7	8	;	9		10	1	1	12**	13		14	15
Water level	507.920	507.910	508.910) 509.15	0 509.9	20 510.4	180 5 ²	11.150) 511.	850	512.7	700 51	3.800	514	.900 5	15.850	516.700	51	17.300	517.850
Inflow	0	0	16876	40092	2 4073	2 321	90 4	1623	473	02	698	10 9	4597	104	290 1	06582	109337	1	14035	111560
Out flow	416	405	98	98	98	98		98	98	8	685	50 4	1921	9	8	128	5628	2	28253	33128
					I		I							1						
Date	16	17	18	19	20	21	22		23	2.	4	25	20	5	27	28	29		30	31
Water level	518.15	518.35	518.50	518.80	518.82	518.93	519.00	0 5	19.08	519	.12	519.18	519	.24	519.34	519.3	5 519.2	27	519.20	518.90
Inflow	82808	57083	46239	42883	26299	19155	13311	1 1	5174	76	62	11413	116	79	22595	29159	7630	15	102752	56447
Out flow	33128	33128	22836	20128	10962	962	128		128	12	28	128	12	8	3045	27203	9194	-2	117336	176297

	Au	ıg 2019																			
Date	1	2	3		4	5		6	7		8	Ç	Ð	10		11	12**	1	3	14	15
Water level	518.550	5184	1 518.3	310 5	518.150	517.8	380 5	17.650	517.2	60 5	517.100	517	.080	517.30	0	517.700	518.240	518	.480	518.550	518.420
Inflow	150409	20583	2 2221	13 2	222543	2452	252 2	279332	36287	75	367318	349	526	57111	1	600049	603041	609	081	588745	583701
Out flow	213453	23014	9 2395	520 2	249823	2901	16 3	316022	39007	72	390072	390	072	53099	1	544784	540991	570	0000	570991	560991
																		-			
Date	16	17	1	8	19	20		21	22	2	3	24	25	5	26	27	28		29	30	31
Water level	518.27	518.2	27 518	8.50	519.15	519.2	20 51	19.40	519.50	519	9.60 5 ⁻	19.60	519.	60 5 [°]	19.60	0 519.60	519.60	51	19.60	519.60	519.60
Inflow	489730	45640	07 386	226	182240	1509	91 4	5064	20551	237	711 1	7491	2399	91 1	0991	1 10991	10991	1	1991	15991	12825
Out flow	520991	45640	07 346	261	182240	1509	91 5	5991	991	26	58 1	2431	2393	31 1	0931	1 10901	10931	1	1991	15991	12825
	So	nt 2010																			
Date	e 1	pt 2019	2	3	4		5	6		7	8		9	10		11	12**	13	;	14	15
Wate	er 519.60	00 519	.600 5	19.600	519.60	0 5	19.350	518.7	5 518	8.34	518.43	51	8.10	517.9	0	518.78	519.20	519.	20	519.17	519.59
m																					
M ³ /s	w 6991	14	491 2	26158	60283	3 1	09366	6992	0 106	674	155850	17	1740	18034	3	223777	210119	2063	666 í	160489	113122
Out flow M ³ /s	6991	14	491 2	26158	60283	8 1	09366	1748′	12 144	1313	174991	22	8407	21349	91	71741	131949	2063	66 î	165199	30657
									•			•					•				
Date	16	17	, .	18	19	2	0	21	22		23	24	Ļ	25		26	27	28	}	29	30
Wate level	r 519.60	519.	60 51	9.60	519.60	519	.60	519.60	519.6	i0 -	519.60	519.	60	519.60	5	519.60	519.58	519.	59	519.60	519.60
Inflow	v 39350	629	91 59	491	34324	280)75	40991	3182	4	28698	168	26	22657	5	57741	123272	857	85	39081	38991
Out flow	36491	629	91 59	9491	34324	280)75	40991	3182	4	28698	168	26	22657	5	57741	128157	839	91	35991	38991
	0	et 2019	-																		
Date	1	2	3		4	5		6	7		8		9	10		11	12**	1	13	14	15
Water level	519.600	519.60	0 519.	600 క	519.600	519.	600 5	519.600	519.6	00	519.600	519	.600	519.60	0	519.600	519.600	519	0.600	519.600	519.600
Inflow	20991	20991	276	57	15991	195	32	19532	3299	0	54491	23	991	21823	3	30991	42324	55	241	26408	30991
Out flow	20991	20991	276	57	15991	195	32	19532	3299	0	54491	23	991	21823	3	30991	42324	55	241	26408	30991
Date	16	17	18	19	9 2	20	21	2	2	23	24		25	2	26	27	28		29	30	31
Water level	519.60	519.60	519.60	519	.60 51	9.60	519.60	519	0.54 5	519.39	519.	18	519.30) 519	9.40	519.54	519.5	5	519.5	7 519.6	60 519.60
Inflow	30991	21824	15991	159	91 25	991	30991	156	407 2	09406	2037	70	143629	9 107	7835	67901	61004	1	56930	3171	8 25298
Out flow	30991	21824	15991	159	91 25	991	30991	156	407 2	40991	2444	64	122299	9 90	298	40298	60420.1	37	51548	3 2479	25298

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2011	0	0	0	30	28	146	66.5	136	135	55.7	0	0	596
2012	0	0	0	48	0	17	7	40	19.4	2.1	21	0	154
2013	0	0	0	0	45	36	108	3.2	145	54.3	0	0	391
2014	0	0	21	10	83	20	31.6	187	135	30	0	4.2	522
2015	0	0	24	50	0	29	2	47	0	20.9	0	0	174
2016	0	0	0	90	4	118	86.4	46	179	8.2	0	0	531
2017	0	0	5	0	42	26	0	12	273	172	0	0	530
2018	0	0	0	0	14	66	76.2	37	12.3	4.2	0	0	210
2019	0	0	0	22	11	76	39.2	27	90.2	70.8	6	0	343
2020	0	0	0	5	8	33	39.2	72	95.8	87.8	0	0	341
2021	0	0	0	0	67	78	100	10	44.8	49.8	34	0	384
Total	0	0	5	23	27	59	50.6	56	103	50.6	6	0.4	

Table 3 Annual average rain fall (mm) over the bridge site

Fig.3 Kudalasangam-Adavihal Bridge

Waterway

Several States in the country, which have been constructing submersible structures for a longtime, have their own practices with regard to the permissible constriction, based on their experience and site conditions prevailing in the respective States. These practices may vary from State to State

For low level submersible structures like causeways, provide a vent area of about 40 per cent but not less than 30 per cent of the unobstructed area of the stream measured between the proposed road top level and the stream bed. In scanty rainfall areas where annual rainfall is less than 600 mm, the vent area can be reduced up to 20 per cent to 30 per cent of unobstructed area. However, the available area of flow under design HFL condition should always be at least 70 per cent of the unobstructed area of flow between the design HFL and the stream bed i.e. the obstruction under design HFL condition should not be more than 30 per cent. For submersible bridges, which would generally be provided with relatively higher road top level, the available area of flow under the stream measured between the stream bed profile and the proposed road top level. (IRC: SP: 82-2008)

Fig.4 Longitudinal section of existing bridge at Kudalasangam-Adavihal

Fig. 5 Inundation area during 2019 flood

Fig. 5A- Photo of Waterspread Area near Advihal Bridge

4.0 Results and Discussions:

Fig. 7- Stream Order and Elevation Maps

Fig. 8- Inundation Maps

Fig. 9 Map of LULC, Slope, Stream order, Topography, Inundation, Flow direction during 2019 flood

Parameters	Units	Rates	Susceptibility	Susceptibility	
			Ranges and	Class	
			Ratings	Ratings	
		Water			
LULC	Level	Bodies	Very high	5	
		Agriculture	High	4	
		Urban	Moderate	3	
		Bare land	Low	2	
		Forest	Very low	1	
Slope	%	0-2.76	Very high	5	
		2.76-7.29	High	4	
		7.29-15.58	Moderate	3	
		15.58-			
		27.90	Low	2	
		27.90-			
		64.11	Very low	1	
Topographic	Scale	706	High	2	
map					
		492	Low	1	
Stream order	Level	1 st order	Low	1	
		2nd order	Medium	2	
		3rd order	High	3	
		4th order	Very high	4	
Flow			East	1	
Direction					
			South East	2	
			South	4	
			South West	8	
			West	16	
			North West	32	

Table 4 Susceptibility Ranges and Ratings

		North West	64
		North East	128

The soil test results shows that the MDD of soil is 1.48 gm/cc OMC is 29.85% C and ϕ Values are 10.75Kg/cm² and 26' respectively,

Sl .No	Perimeter	Area (m ²)	Inundation				
	(m)						
1	2,660	2,39,926	Village (Kudala sangam and				
			Adavihal village)				
2	34,582	5,549	Road (Kudala sangam village)				
3	9,318	1,124	Road (Adavihal village)				
4	10,297 10,42,626		Crop land				
5	649 19,579		Kudala sangam temple				
6	5,713	2,73,798	Inundation of crop land				
7	7,045	8,24,999	Submerged area				
Total	70,262	24,07,600					

Table 5 Perimeter and inundation area of Kudalsangam and Adavihal village

4.1 Discharge in the river:

N = Rugosity co-efficient (Table-5.1; IRC: SP 13-2004) Bed slope for Bed Material–Boulders, Gravel and sand (IRC 89-1997)

 $Q = A \times V....(1)$

Wetted perimeter: 1000 m

 \Box Cross section area: 2750 m²

 \Box Bed slope: 1/100

$$Q = \frac{A*1.485 \text{ x } R^{2/3} \text{ x } S^{1/2}}{\text{N}}....(2)$$

$$Q = 22,909.11 \text{ m}^{3}/\text{sec}$$

Vent way calculation: Lacey's equation:

$$Pw = 1.811C\sqrt{Q}.....(3)$$

= 1.811X3.5X\sqrt{22},909.11 Pw = 959.38 m
Dsm = 1.34 x [**Db²Kf**]^{1/3}.....(4)

Silt factor: $Kf = 1.76\sqrt{M}$

Db =Discharge/Length of bridge including approaches

Table 6 Comparison between existing and proposed parameters

Component	Length of bridge	Vent way (m)	Vertical clearance (m)	No. of piers	Water way (m)	Soffit Level (m)	Low water level (m)	Horizontal clearance (m)
Existing (m)	735	702	7	13	735	499	491	51
Proposed(m)	998	959	7	18	959	503	494	51

During heavy flood on 2019 the flood level raised up to 496m from existing HFL 492.252, which cause the flood inundating the surrounding areas of bridge abutments such as village, crop land, road, Kudalasangam temple.

The velocity of flow in Krishna River and Malaprabha River are 7.76 m/sec and 4.80

m/sec respectively during normal flow, where as the velocity flow increases to 9.68 m/sec, and 8.33 m/sec during flood

The soil samples were collected at random locations at approximately 10m interval, for a distance of 500m upstream and downstream sides of the bridge site. These soil samples were extracted from core cutter method and maximum dry density (mdd) test was conducted using procter method, specific gravity by pycnometer method and sieve analysis and also Unconfined compression strength test was carried out to find C and Φ . The testing of soil (angle of shearing resistance, (ϕ) in degrees = 26 and, cohesion intercept in kg/cm² or = 11.07 N/cm²) which is accumulated from catchment below the bridge site shows that the silt is having less cohesion and easily flows and accumulated below the bridge causes flooding to the nearby area. The total quantity of silt accumulated at river bed is approximately 7,172.57 tones.

5.0 Conclusions

The Hydraulic design of the bridge is done based on HFL at 492.252 m with vent way 735 m but during heavy flood the HFL of the river Malaprabha flood is raised to 496m which causes flooding of the surrounding area, due to insufficient vent way. Velocity of flow in Krishna River is more compare to Malaprabha River hence the flow at conflict point is less which may results the accumulation of siltation below the bridge. The present provision of vent way is insufficient, likely to cause more backwater effect due to construction of Narayanapur Dam and flood in the Malaprabha river, Hence there is a need for increase of vent way of the bridge keeping the as HFL 496 m

The report is submitted to government of Karnataka to increase the water way under the bridge the same is under consideration

References

1) Wen Wang, Kaibo Zhou, HaixiaoJing*, Juanli Zuo, Peng Li and Zhanbin Li (2019): "Effects of Bridge Piers on Flood Hazards: A Case Study on the Jialing River in China" State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xian 710048, 11, 1181; doi:10.3390/w11061181

2) Teng Hui, Wang Lirong, Yan Bin and Geng Bing (2020): "Analysis of Impacts of Crossing Bridges on Flood Control and Dike Safety" IOP Conf. Series: Materials Science and Engineering pp 780 062058 doi:10.1088/1757-899X/780/6/062058

3) Hua Ge1*, Chunyan Deng (2020) : "A numerical study of flood effect of a bridge at tail of Ganjiang River, entrance of Poyang Lake" Changjiang River Scientific Research Institute, Wuhan, Hubei, 430010, China E3S Web of Conferences pp 198, 04006 (2020) ISCEG 2020

4) Rathod Chiranjeevi, Sabbineni Ramyakala, Saireddygari Shashank Reddy (2016): "Design of High Level Bridge Across River" International Journal of Engineering Research &Technology (IJERT) ISSN: 2278-0181 IJERT V 5 IS090230 Vol.5 Issue 09, September-2016

5) Patel Chandresh G., Dr. P. J. Gundaliya (2014): "Calculating Discharge Carrying Capacity of River Tapi" International Journal of Engineering Research & Technology

(IJERT) ISSN: 2278-0181 Vol. 3 Issue 3, March - 2014

6) Xianqi Zhanga,b,c, Tao Wanga,* and Bingsen Duan (2021) : "Study on the effect of morphological changes of bridge piers on water movement properties" a Water Conservancy College, North China University of Water Resources and Electric Power, Zhengzhou 450046, China Water Practice & Technology Vol 16 No 4, 1421 doi: 10.2166/wpt.2021.080

7) Anderson, M. P., and Woessner, W. W. (1992). "Applied simulation of flow and adjective transport, academic", San Diego.

8) Ramesh, H and A. Mahesh, (2018) "Simulation of Varada aquifer system for sustainable surface water development". Jour. Irrigation Drainage Engrg, 134:3:387. (33 publications and 61 publications)

9) Alexander DE (2002). "An overview to flood vulnerability assessment methods" principles of emergency planning and management. Oxford University press, oxford.

10) Shekhar, M. S., Pattanayak S., and mohanty, U. C. (2015) Review of different methods and techniques used for flood vulnerability analysis.

11) Captain Dr. K. Rajendra,. "Bagalkot district disaster management plan 2019-2020", Deputy Commissioner and district magistrate, chairman district disaster management authority, Bagalkot (Karnataka). Pp-18, Pp 72-73.

12) Zubair Ahmad Khanday and K. Sujatha "Flood Hazard Mapping and Assessment Using Geospatial Techniques and AHP Model based hazard Zonation – A case study of Coastal Taluks of Cuddalore District, Tamil Nadu, India", Pp 6-9.

13) LuanaLavagnoli Moreira, Mariana Madruga de Brito and Masato Kobiyama (2021). "A systematic review and future prospects of flood vulnerability indices", Institute of Hydraulic Research, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil. Department of Urban and Environmental Sociology, Helmholtz Centre for Environmental Research, Leipzig 04318, Germany.