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Abstract: A number field K is a fit field extension of Q. Its degree is [K: Q]. i.e. its dimension as Q-

vector a space. An algebraic number is an algebraic integer if it satisfies a ionic polynomial with 

integer coefficients, equivalently. Its minimal polynomial over Q should have integer coefficients. 

 

Definition: Let K be a number field. Its ring of integers Qk consists of the elements of K which are 

algebraic integers. 

Proposition 3.1: (i) Qk is a Noetherian ring. 

(ii) . i.e.  is a finitely generated abelian group under addition, and 

isomorphic to  

(iii) For every  there exists  with  

(iv)  is the maximal subring of K which is finitely generated as an abelian group. 

(v)  is integrally closed, i.e.. ii"  is ionic and  for some  

then  

Example: 

 

Example:  since  

UNITS 

Definition. A unit, in a number field K is an element such that The group of units in K is denoted 

by    
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Example: For  we have  and . 

For we  have  and  

Theorem 3.1 (Dirichlet's I nit Theorem). Lt^t K be a number field. Then  is a finitely generated 

abelian group. More precisely  

where is the finite group of roots of unity in K. and r\ and or denote the number of real embedding  

 and complex conjugate embedding with image not contained in R. so 

 

Corollary 3.1: The only number fields with finitely many units’ art; 

Q and  

 

 

FACTORISATION 

Example. Z lias unique factorisation. We do not have this luxury in  in general, e.g.. let 

 with  then where  are  irreducible and 

2,3 are not equal to up to units. 

Theorem 3.2 (Unique Factorisation of Ideals): Let K be a number field. Then every non-zero ideal 

of admits a factorisation into prime ideals . This factorisation is unique 

up to order. 

Example: In  

(6) =  

 

Where  , ,  are prime ideals. 

Definition: Let  be ideals. Then A divides D . If there exists  such that 

A . C = D. equivalently. IL ‘in the prime factorisations 

 

 

we have  for all  

Remark.  (i) For =   if and only if  for some  

(ii) For ideals  if and only if  

(iii; To multiply ideals, just multiply their generators, e.g. 
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(iv) Addition of ideals works completely differently, simply combine the generators.  

e.g.,  

IDEAL CLASS GROUPS 

Let K be a number field. Define an equivalence relation ~ on non-zero ideals by  if 

 for some . The ideal class group  of K is the set of equivalence classes. 

This is in fact a group, the group structure conies from multiplication of ideals. That identity clement 

is the; class of principal ideals. 

In particular  is a unique factorisation domain if and only ii"   is finite. 

Exercise: Let  be an imaginary quadratic field. Then two non-zero ideals belong 

to the same class in  if and only if the lattices they give in C are homothetic. I.e. related bv 

scaling and rotation about 0. 

PRIMES AND MODULAR ARITHMETIC 

Definition. A prime P in a number field K is a non-zero prime ideal in . Its residue field is 

 

Example: where  p is a prime number. 

Definition. That; absolute residue degree of P is where p =  char 

 

EXAMPLE: QUADRATIC NUMBER FIELDS 

Before we consider number fields in general, let us begin with the fairly concrete ease of quadratic 

number fields. A quadratic number field is an extension K of  of degree 2. The fundamental 

examples (in fact, as we shall see in a moment the only example) arc fields of the form 

 

where  is not the square of another rational number. 

There is an issue that arises as soon as we write down these fields, and it is important that we deal 

with it immediately: what exactly do we mean by  . There are several possible answers to this 
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question. The most obvious is that by  we mean a specific choice of a complex square root of d. 

 is then defined as a sub field of the complex numbers. The difficulty with this is that the 

notation is ambiguous; d has two complex square roots, and there is no algebraic way to tell 

them apart. 

Algebraists have a standard way to avoid this sort of ambiguity; we can simply define 

 

There is no ambiguity with this notation ; really means x, and x behaves as a formal algebraic 

object with the property that   

This second definition is somehow the algebraically correct one, as there is no ambiguity and it allows 

 to exist completely independently of the complex numbers. However, it is far easier to 

think about  as a subfield of the complex numbers. The ability to think of  as a 

subfield of the complex numbers also becomes important when one wishes to compare fields 

 and  for two different numbers d\ and the abstract algebraic fields 

and  have no natural relation to each other, while these 

same fields viewed as sub fields of can be compared more easily. 

The best approach, then, seems to be to pretend to follow the formal algebraic option, but to actually 

view everything as sub fields of the complex numbers. We can do this through the notion of a 

complex embedding; this is simply an injection 

 

As we have already observed, there are exactly two such maps, one for each complex square root of d. 

Before we continue we really ought to decide which complex number we mean by  . There is 

unfortunately no consistent way to do this, in the sense that we cannot arrange to have 

 for all .  

In order to be concrete, let us choose  to be the positive square root of d for all  and 

 to be the positive square root of —d times I for all  . (There is no real reason to prefer 

these choices, but since it doesn't really matter anyway we might as well fix ideas.) With this choice, 

our two complex embedding arc simply  
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defined by  

 

Given any , we define its conjugates to be the images  

 and  

Note that these maps have the same image. This gives us yet another way to view the ambiguity: we 

can take  to be the subfield of  and  we remember 

that  has an auto morphism  

This is the approach we will take; that is, we will regard  as a subfield of  via our 

choice of  but we always remember that  is ambiguous, and thus that we have an auto 

morphism of this field exchanging  and . From this point of view, the conjugates of an 

element  are  and  

Let us now analyse these fields . Note first that every  has degree either 1 

or 2 over , and it has degree 1 if and only if it is actually in  In particular, if  then we 

must have  

Let us now compute the norms and traces from K to  We take 1 , as our basis for K over  

Multiplication by  takes 1 to  and  to  so the 

matrix for the linear transformation  is 

 

 

The characteristic polynomial of this matrix is 

 

Thus 

 

And 
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Note also that we have 

 

And 

 

That is, the norm of ∞ is the product of its conjugates and the trace of ∞ is the sum of its conjugates. 

This follows immediately from the fact that the conjugates of ∞ are the two roots of the characteristic 

polynomial of ∞. 

GALOIS THEORY OF NUMBER FIELDS 

Let K be a Galois extension of Q of degree n. Recall that this means  that if denote the 

complex embedding of K, then the  all have the same image in C. Let us denote this image by KQ 

for the remainder of this section. We wish to reinterpret the complex embedding as auto morphisms of 

K. 

To do this, fix one embedding, say . Consider the n maps 

 

These maps are all auto morphisms of K (that is, is morphisms from K to K) since they are all 

isomorphism’s from K to KQ. 

We claim that in fact these arc all of the auto morphisms of K. So suppose that is 

any auto morphism of K. Then is a complex embedding of K, and 

thus equals one of the Thus as claimed. In general, if M is any sort of object, 

then the set of auto morphisms of M form a group with composition as the group law; this is because 

the composition of two auto morphisms and the inverse of an auto morphism arc again auto 

morphisms.  

We define the Galois group  of K over Q to be the group of auto morphisms of K; our 

above arguments show that as a set is just the maps:  : . Note 

in particular that  

 

And 

 

are again of the form for some k, although it is not at all clear which k it is. 
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Note that has order n; even if K is not Galois one could still consider the auto 

morphisms of K, but the above construction no longer works and it is somewhat harder to determine 

how many auto morphisms there are. 

When one actually computes Galois groups, it is usually much simpler to consider the fields as 

subfields of C. So let K be a Galois number field which is also a subfield of C. The auto morphisms of 

K are now simply its complex embedding . (With our earlier notation, we 

really are just considering the case where  is the identity map.) Note in particular that  

and are also complex embedding of K, although it is not immediately clear which. 

To determine which, let ∞. be a primitive element for K over Q and let . 

be its conjugates, so that the complex embedding of K are given by We can now 

determine simply by determining for which k we have  

 

we then have 

 

EXAMPLE 4.1: Let d be a square free integer (other than 1) and consider the field . This 

has the two embedding  and characterized by  

 

and 

 

We find that  

that is, . This confirms that 

 

as it must be ; is the identity element and is the nontrivial element. 

EXAMPLE - Consider the field  
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This field has  degree 4 over with complex embedding characterized. 

One computes easily that each of and have square  and that the product of any two 

of them is the third, so that is isomorphic to  
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