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Let A be an integral domain, and let L be a field containing A. An element a of L is said to be integral 

over A if it is a root of a monic polynomial with coefficients in A, i.e., if it satisfies an equation 

 

THEOREM 5.1 The elements of L integral over A form a ring. I shall give two proofs of this 

theorem. The first uses Newton's theory of symmetric polynomials and a result Eisenstein, and the 

second is Dedekind's surprisingly modern proof, which avoids symmetric polynomials. 

FIRST PROOF THAT THE INTEGRAL ELEMENTS FORM A RING 

A polynomial is said to be symmetric if it is unchanged when its 

variables are permuted, i.e., if  

For example are all symmetric.  

These particular polynomials are called the elementary symmetric 

polynomials. 

THEOREM 2.2 (Symmetric function theorem) Let A be a ring. Every symmetric polynomial is equal 

to a polynomial in the symmetric elementary polynomials with 

coefficients in A, i.e. , 

PROOF. We define an ordering on the monomials in the by requiring that 

if either 

 

or equality holds and, for some s, 

 



Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com,   ISSN: 2320-0294 

 

85 International Journal of Engineering, Science and Mathematics 
http://www.ijmra.us, Email: editorijmie@gmail.com 

 

Let be the highest monomial occurring in P with a coefficient  Because P is 

symmetric, it contains all monomials obtained from by permuting the Hence 

 

Clearly, the highest monomial in  is , and it follows easily that the highest monomial in 

 is 

 

Therefore 

 

We can repeat this argument with the polynomial on the left, and after a finite number of steps, we 

will arrive at a representation of P as a polynomial in . 

Let and let be the roots of f(X) in some 

ring containing A, so that in the larger ring. Then 

 

Thus the elementary symmetric polynomials in the roots of f(X) lie in A, and so the theorem implies 

that every symmetric polynomial in the roots of f(X) lies in A. 

PROPOSITION 2.3 Let A be an integral domain, and let be an algebraically closed field 

containing A. If are the roots in of a monic polynomial in , then any 

 polynomial in the or, with coefficients in A is a root of a monic polynomial in  

PROOF. Clearly 

 

is a monic polynomial whose coefficients are symmetric polynomials in the , and therefore lie in 

A. But  is one of its roots.  

We now prove Theorem 5.1. Let  and  be elements of L integral over A. There exists a monic 

polynomial in A [X] having both  and as roots. We can now apply with equal to  to 

deduce that these elements are integral over A. 

DEDEKIND'S PROOF THAT THE INTEGRAL ELEMENTS FORM A RING 

PROPOSITION 5.1 Let L be a field containing A. An element a of L is integral over A if and only if 

there exists a nonzero finitely generated A-sub module of L such that  (in fact we can take 

, the A-sub algebra generated by ). 
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PROOF.  : Suppose 

 

Then the A-submodule M of L generated by  has the property that 

We shall need to apply Cramer's rule. As usually stated (in linear algebra courses) this says that, if 

 

Then 

 

where  and  is obtained from C by replacing the elements of the yth column with the 

djS. When one restates the equation as 

 

it becomes true over any ring (whether or not det(C) is 

invertible). The proof is elementary— essentially it is what you wind up with when you eliminate the 

other variables (try it for m = 2). Alternatively, expand out 

 

using standard properties of determinants. Now let M be a nonzero A-module in L such that

 , and let be a finite set of generators for M. Then, for 

each  , 

 We can rewrite this system of equations as 

 

Let C be the matrix of coefficients on the left-hand side. 

Then Cramer's rule tells us that  for all. Since at least one  is nonzero and we are 

working inside the field L, this implies that det(C) = 0. On expanding out the determinant, we obtain 

an equation 

 

We now prove Theorem 5.1. Let or and  be two elements of L integral over A. and let M and N be 

finitely generated Amodules in L such that aM c M and  . Define 
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Then: 

1. MN is an .4-submoduIe of L (easy); 

2. it is finitely generated because, if generates M 

and generates N, then generates 

MN; 

3. it is stable under multiplication by  and by  We can now apply (5.1) to deduce that  and 

are integral over A. 

RINGS OF INTEGERS ARE FINITELY GENERATED 

We now show that  is finitely generated as a -module. 

PROPOSITION 5.2 Let A be an integrally closed integral domain with field of fractions K. and let B 

the integral closure of A in a separable extension L of K of degree m. There exists free Asubmodules 

M imd  of L such that 

 (6) 

Therefore, B is a finitely generated A-module if A is Noetherian. imd it is free of nuik m if A is a 

principal ideal domain. 

PROOF. Let  be a basis for L over K. There exists a nonzero such that

 for all. Clearly  is still a basis for L as a vector space over K. and so 

we may assume to begin with that each . Because the trace pairing is nondegenerate. there is a 

"dual"  basis  of L over K such that . We shall show that 

 

Only the second inclusion requires proof. Let  Then  can be written uniquely as a linear 

combination  of the  with coefficients , and we have to show that 

each  As  and  are in B. so also is  , and so. But 

 

Hence   

If A Noetherian, then  is a Noetherian y4-module, and so B is finitely generated as an A-module. 

If A is a principal ideal domain, then B is free of  because it is contained in a free A -

module of rank m, and it has because it contains a free A-module of rank m. 

COROLLARY 5.1 The ring of integers in a number field L is the largest subring that is finitely 

generated as a  -module. PROOF. We have just seen that  is a finitely generated - module. 
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Let B be another subring of L that is finitely generated as a  -module; then every element of B is 

integral over  (by 5.1). and so  .  

REMARK (a) The hypothesis that L/K be separable is necessary to conclude that B is a finitely 

generated Amodule (we used that the trace pairing was non degenerate). 

However it is still true that the integral closure of  in any finite extension of  (not 

necessarily separable) is a finitely generated  module. 

(b) The hypothesis that A be a principal ideal domain is necessary to conclude from (6) that B is a free 

A-module —there do exist examples of number fields  such that  is not a free  -module. 

(c) Here is an example of a finitely generated module that is not free. Let  and consider 

the A-modules  

Both (2) and  are free  -modules of rank 1, but  is not a free

 -module of rank 1, because it is not a principal ideal. In fact, it is not a free module of any 

rank. 

DEFINITION When K is a number field, a basis  for as a  -module is called an 

integral basis for K. 

REMARK We retain the notations of the proposition and its proof. 

(a) Let  , with  a basis for L over K. Define

 

By linearity, 

9 

and it follows that 

 

Thus we have: 

 

(b) Wrrite with  , and let  be the minimum polynomial of  . Let 

. We want to find  One can show that 

 

(these formulas go back to Euler). It follows from this that  

(the only term contributing to the determinant is the product of the elements on the other 

diagonal). If  is the dual basis to  , so 
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that  , then  

On comparing these formulas, one sees that the matrix relating the family 

 

to the basis 

 

has determinant  , and so it is invertible in  . Thus we see that  is a free A-module with 

basis :  

UNIQUE FACTORIZATION 

Factorization in subrings of number fields. Let K be a number field. Although there is much 

information which can be obtained just by considering K, answering many of the most interesting 

questions will require some sort of notion of factorization into primes. Factorization in K itself is not 

very interesting: every non-zero element is a unit, so there are no primes at all. In order to obtain these 

primes, we must somehow define a special subring of K this ring should have lots of primes, and 

factorizations in it should hopefully yield interesting arithmetic information. 

EXAMPLE. As a first example of the useful of factorizations, let us solve the Diophantine equation 

 

(When we speak of solving a Diophantine equation, we always mean that we are interested in 

solutions with  , or occasionally  .) We can solve this equation by first factoring it as 

 

Since both  and  are integers, we see that we are searching for pairs of integers

 such that  . The fact that x and y are integers implies 

that d and e must be congruent modulo 2, so we are really looking for complimentary pairs of divisors 

of 105 which are congruent modulo 2. These pairs (up to reordering and negation) are 

 

they yield the solutions 

 

and their negatives. This example illustrates the usefulness of factorizations for solving Diophantine 

equations. On the other hand, when one has an equation like  which 

cannot be factored over  , it becomes necessary to add additional numbers with which to factor. In 

this case,  does factor over  

The question, then, is which subring. We take as our model the subring  of the number field  . Of 

course, we have a very good theory of factorization in  : every nonzero  

factors uniquely as a product 
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where the  are distinct positive primes and all  . This sort of factorization actually extends 

to the field  : any nonzero rational number  can be uniquely written as a 

product 

 

where now we allow the  to be negative as well. Of course, the  are not really prime in  , but 

so long as we remember that they come from we can still consider them as distinguished elements 

to be used in factorizations. In any event, note that this sort of factorization shows that we have an 

isomorphism 

 

where the direct sum is over all positive primes p of  . It is probably worth pausing a moment, here 

to clarify the sign issue. In  we have two "copies" p and —p of each prime. They behave exactly the 

same in factorizations (the sign absorbing any changes), and there is no real reason to prefer one over 

the other. For the time being just assume that we have chosen one of them to use in factorizations; in 

the case of ss , the positive primes are the natural choice but later on, when we have rings with lots 

of non-trivial units, there will be no obvious natural choices. 

Fortunately, all of this confusion will go away as soon as we begin working with ideals rather than 

elements. 

Returning to the previous discussion of factorization in Z, our first requirement must be that we have 

some sort of good factorization theory in our special subring R of K. We shall see later that it is 

unreasonable to ask for unique factorization, but we would like something close.  

First condition (vague): R should have a good theory of factorization. 

Our second requirement should be that the factorizations in R should extend to K in some way. The 

easiest way to insure this is to require that K be the field of fractions of R; this just means that every 

element of K can be written as a quotient of two elements of R. In particular, the subring of K, while a 

wonderful ring in many ways, has field of fractions, so it is not suitable for a theory of factorization in 

any number field larger than 

Second condition: The field of fractions of R should be K. We will in fact obtain a stronger version of 

the second condition, and since it is easier to check we state it as well. 

Second condition (strong form): Every  can be written as  where and 

 

All of the above conditions amount to asking that R be "big enough" this is clear for the second 

condition, while for the first we will see that in order to get a good factorization theory one must not 

leave out too many elements of K. 
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Now, it happens that has lots of subrings with all of  as field of fractions. For example, for any 

set of primes S we have the ring. 

 

In terms of unique factorization in , rational numbers are in  if and only if they can be 

written as  

where we allow  to be any integer for , but we require  to be positive if of 

course, these rings seem somewhat contrived; we are really just adding some denominators to  in 

fact, it is easy to see that all are now units in  so the primes of  are just the 

primes of not in 5. Thus factorizations into primes of contains less information than those 

in Somehow, then, in order to get the most information, we want to choose for R the smallest 

subring of K which satisfies the first two conditions. 

Taking advantage of our knowledge that is a good prototype for i one possibility for this third 

condition is to require that  Third, condition:  

Our goal, then, is to find a good interpretation of the first condition, and then we will hope that there 

is a natural subring of K satisfying the three conditions. First attempts. In order to help us figure out 

what interpretations to give to our first condition, let us begin by making some guesses. Let K be a 

quadratic number field. 

We know that we can write  for a unique squarefrce integer d. Let us take our 

guess for the special subring to be  

Now, while there are many other such that , this ring R has several 

things recommending it. First of all, if is not an integer, then  , so this 

intersection is larger than ; this would violate our third condition. Also, if  is a non-squarefree 

integer, then we can write so  but  

Thus seems to missing the element  which it really ought to contain, while R does not 

appear to be missing anything. (Later we will see that sometimes R is missing some non-obvious 

elements, but let us not worry about, this yet.) Considering all of this, then, seems to be the 

most natural choice for special subring R. 

As a second example, take  . This time there is really only one obvious ring to write 

down, that being   (Note that R is independent of the choice of primitive m
th
 root of 

unity  since every primitive m
th
 root of unity is a power of every other one. One can also check 

that if m is odd, then  , so that we have defined the same ring no matter which 

m is used to define K.) So for lack of any better choices, we will take  to be our guess 

for  
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The astute reader will have noticed that we have now made two different choices for the special 

subring of  . On the one hand, K is a quadratic field, so we have chosen 

 . On the other hand, K is also a cyclostome field: 

we have  , since 

 

In this case we have the choice  , which is actually larger than R. Right away 

we see that one of these must be wrong. We will figure out which one it is a bit later. 

Ignoring that issue, note that at the very least these choices all satisfy the strong form of our second 

condition, and one can show without too much difficulty that they satisfy the third condition. The 

main remaining consideration is the factorization condition. 

RINGS OF INTEGERS IN CYCLOTOMIC FIELDS 

Let p be a rational prime and let . We write  for for this section. 

Recall that K has degree over  . We wish to show that  

Note that is a root of  , and thus is an algebraic integer; since  is a ring we have that 

. We need to show the other inclusion. 

Following , we give a proof without assuming unique factorization of ideals. We begin with some 

norm and trace computations. Let j be any integer. If j is not divisible by p, then  is a primitive p
th
 

root of unity, and thus its conjugates are  . Therefore 

 

If p does divide j, then  , so it has only the one conjugate 1, and 

 

By linearity of the trace, we find that  

 

We also need to compute the norm of . For this, we use the factorization  

 

plugging in x = 1 shows that 

 

Since the  are the conjugates of  , this shows that  

The key result for determining the ring of integers  is the following. Lemma 4.1. 

 

PROOF. We saw above that p is a multiple of  in , so the inclusion 

 

is immediate. Suppose now that the inclusion is strict. 
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Since is an ideal of  (check the definition) containing and  is a 

maximal ideal of , we must have 

 

Thus we can write 

 

for some . That is,  is a unit in . But this is impossible by Lemma 1.9, since 

we know that  has norm p, while units have norm  . This is a contradiction, which proves 

the lemma. 

 Corollary 5.2. For any  , 

 

 

where the  are the complex embeddings of K (which we are really viewingas automorphisms of K) 

with the usual ordering. Furthermore, by Exercise is a multiple of in  for every 

 . Thus 

 

Since the trace is also a rational integer, Lemma completes the proof. Proposition 5.3. Let p be a 

prime number and let  be the pth cyclotomic field. Then 

 

thus  is an integral basis for  

Proof. Let  and write 

 

with . Then 

 

By the linearity of the trace and our above calculations we find that 

 

So  

Next consider the algebraic integer 

 

this is an algebraic integer since  is. The same argument as above shows that 

 , and continuing in this way we find that all of the are in  . This completes the 

proof. 
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One can use an almost identical proof in the case where  is a p
k
-root of unity for some k. The case of 

 where m has multiple prime factors is usually handled by a general lemma on rings of integers in 

compositums of number fields. 
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