Vol. 7, Issue 4, April 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

ON FUZZY WARD CONTINUITY IN 2- FUZZY 2 - ANTI NORMED LINEAR SPACE.

Thangaraj Beaula¹* Beulah Maiya²

Abstract In this paper the fuzzy ward continuity with some other kinds of continuities are investigated in 2- fuzzy 2-anti normed linear space. Further some theorems are developed. It turns out that uniform limit of fuzzy ward continuous functions is again fuzzy ward continuous **Keywords:** Outsi Couchy**

Quasi-Cauchy, fuzzy ward continuity, fuzzy ward compactness,

sequential continuity

Copyright © 2018 International Journals of Multidisciplinary Research Academy. All rights reserved.

Author correspondence:

Thangaraj Beaula¹, Beulah Mariya²

PG and Research Department of Mathematics, TBML College, Porayar Tamil Nadu India – 609307

1. Introduction

The concept involving continuity plays a major role in all branches of sciences, and also pure mathematics. In 1965 Zadeh[11] introduced the concept of the fuzzy sets in his seminal paper. The concept of 2-normed spaces was developed by Gahler [4] in 1964. Menger [5] introduced the notion called a generalized metric in 1928. Recently many mathematicians came out with the results in 2- normed linear spaces and banach spaces [3,6,7] the concept of ward continuity of real functions and ward compactness of a subset E of R are introduced by Caaklli [2]. Using the main idea in the definition of sequential continuity and many kinds of continuities were introduced and investigated [1,2, 9]. R.M.Somasundaram and Thangaraj beaula[8] have newly coined 2-fuzzy normed liner space and proved many important theorems.

In this paper the authors aimed to introduce the concept of fuzzy ward continuity in 2-fuzzy 2- anti normed linear space. Also it is proved that the image of a fuzzy ward compact space under a uniform continuous map is fuzzy ward compact.

Vol. 7, Issue 4, April 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

2. Preliminaries

Definition 2.1

A binary operation *: $[0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t-norm if itsatisfies the following conditions

- 1. * is commutative and associative
- 2. * is continuous
- 3. a * 1 = a, for all $a \in [0,1]$
- 4. $a * b \le c * d$ whenever a c and b d and $a,b,c,d \in [0,1]$

Definition 2.2

A binary operation $\lozenge: [0,1] \times [0,1] \to [0,1]$ is a continuous t – conorm if it satisfies the following conditions

- 1.♦ is commutative and associative
- 2.♦ is continuous
- 3. $a \lozenge 0 = a$, for all $a \in [0,1]$
- 4. $a \lor b \le c \lor d$ whenever $a \le c$ and $b \le d$ and $a, b, c, d \in [0,1]$

Definition 2.3

An intuitionistic fuzzy 2- normed linear space (i.2f-2-NLS) is of the form

A = {F(X), N(f₁, f₂, t), M(f₁, f₂, t) / (f₁, f₂) F[(X)]²} where F(X) is a linear space over afield K, * is a continuous t-norm, \Diamond is a continuous t-conorm, N and M are fuzzy sets on[F(X)]² (0, ∞) such that N denotes the degree of membership and M denotes the degree of non-membership of (f₁, f₂, t) \in [F(X)]²x (0, ∞) satisfying the following conditions

- (1) N $(f_1, f_2, t) + M (f_1, f_2, t) \le 1$
- (2) $N(f_1, f_2, t) > 0$
- (3) $N(f_1, f_2, t) = 1$ if and only if f_1 , f_2 are linearly dependent
- (4) $N(f_1, f_2, t)$ is invariant under any permutation of f_1, f_2
- (5) $N(f_1, f_2, t) : (0, \infty) \rightarrow [0,1]$ is continuous in t.
- (6) $N(f_1, cf_2, t) = N(f_1, f_2, |\frac{t}{|c|}|)$, if $c \neq 0$, $c \in K$
- (7) N $(f_1, f_2, s) * N(f_1, f_3, t) \le N(f_1, f_2 + f_3, s + t)$
- (8) M $(f_1, f_2, t) > 0$
- (9) $M(f_1, f_2, t) = 0$ if and only if f_1 , f_2 are linearly dependent
- (10) M (f_1 , f_2 , t) is invariant under any permutation of f_1 , f_2
- (11) M $(f_1, cf_2, t) = M (f_1, f_2, |\frac{t}{|c|}) |)$, if $c \neq 0$, $c \in k$
- (12) M $(f_1, f_2, s) \Diamond M (f_1, f_3, t) \ge M (f_1, f_2 + f_2, s + t)$
- (13) M $(f_1, f_2, t) : (0, \infty) \rightarrow [0,1]$ is continuous in t.

3. On fuzzy ward continuity in 2- fuzzy 2 - anti normed linear space.

Definition 3.1

A sequence $\{f_n\}$ of a points in a fuzzy 2- anti normed linear space $(F(X), N^*)$ is said to be quasi-Cauchy if $N^*(\Delta f_n, g, t) < r$ for every $g \in F(X)$, $t \in (0,1)$ where $\Delta f_n = f_{n+1} - f_n$

Definition 3.2

A subspace A of F(X) is said to be fuzzy ward compact if any sequence in A has a quasi- Cauchy subsequence.

Definition 3.3

Let $(F(X), N_1^*)$ and $(F(Y), N_2^*)$ be fuzzy 2- anti normed linear space. A function φ : $F(X) \rightarrow F(Y)$ is said to be fuzzy ward continuous if it preserves quasi- Cauchy property

Vol. 7, Issue 4, April 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

that is,
$$N_2^*$$
 ($\Delta \varphi(f_n)$, g , t) $<$ r_2 for every $g \in F(Y)$ whenever N_1^* ($\Delta(f_n)$, h , t) $<$ r for every $h \in F(X)$ where r_1 , $r_2 \in (0,1)$

Definition 3.4

A function ϕ on a subspace A of a fuzzy 2 - anti normed linear space (F(X), N) is said to be sequentially continuous at f_0 if for any sequence $\{f_n\}$ in A converges to f_0 then sequence ϕ $\{(f_n)\}$ converges to ϕ $\{(f_o)\}$ in (F(Y), N)

Definition 3.5

A function $\phi:F(X)\to F(Y)$ is said to be uniformly continuous on a subspace A of F(X) if for any $\varepsilon \in (0,1)$ there exist a $\delta \in (0,1)$ such that

$$N_2^*$$
 ($\phi(f_1)$ - $\phi(f_2)$, h, t) $\leq \epsilon$ for any h \in F(Y), t \in (0,1) whenever N_1^* ((f_1 - f_2), g, t) $\leq \delta$ for every f_1 , $f_2 \in A$ and $g \in$ F(X)

Theorem3.1

If φ : $F(X) \rightarrow F(Y)$ is fuzzy ward continuous on A of F(Y) then it is sequentially continuous on A.

Proof

If $\{f_n\}$ be a convergent sequence in A, then $N^*((f_n - f_0), h, t) < r$ where $h \in F(X)$; $t \in (0,1)$

Construct a sequence $\{g_n\}$ as,

$$\begin{split} g_n &= \begin{cases} f_n \text{ , } & \text{if } n = 2k-1 \text{ where } k \text{ is a positive integer} \\ f_0 \text{ , } & \text{if } n \text{ is even} \end{cases} \\ Consider, \ N^*(g_n-f_0\,,\,h\,,\,t) = N^*((g_n-f_n+f_n-f_0\,),\,h,\!\frac{t}{2}+\frac{t}{2}) \end{split}$$

$$\leq max \ \{ \ N^* \ ((g_n - f_n \ , h \ , \frac{\textbf{\textit{t}}}{2} \) \ , \ N^* \ ((f_n - f_0 \ , h \ , \frac{\textbf{\textit{t}}}{2} \) \} \quad \text{------} (1)$$

When n is odd, $N^* ((g_n - f_0, h, t) \le N^* (f_n - f_0, h, t) < r$

When n is even N*(g_n - f₀, h, t) = N*((f₀ - f_n + f_n - f₀), h $\frac{t}{2}$ + $\frac{t}{2}$)

$$\leq \max \; \{ \; N^* \left((f_0 - f_n \, , h \, , \frac{t}{2}) \, , \, N^* \left((f_n - f_0 \, , h \, , \frac{t}{2}) \right) \}$$

$$= N^* \left(f_0 - f_n \, , \, h \, , \, t \, \right) \; < \; r$$

Now to prove that $\{g_n\}$ is a quasi- Cauchy sequence that is, $\Delta g_n = g_{n+1} - g_n$ When n is odd, the above equation becomes $\Delta f_n = f_{n+1} - f_n$

Therefore
$$N*(\Delta g_n, h, t) = N*(f_{n+1} - f_n), h, t)$$

$$\begin{split} &= N*(\;(f_{n+1} - \;f_0 + f_0 - f_n), \,h \;, \,t \;) \\ &= max \; \{N*((\;f_{n+1} - \;f_0\,), \,h \;, \frac{t}{2}), \!N*(\;f_0 - f_n\;, \,h \;, \frac{t}{2})\} \end{split}$$

$$< r.$$
 (since $\{ f_n \}$ converges to f_0)

Hence $\{g_n\}$ is a quasi Cauchy sequence when n is even the case is trivial. Given φ is fuzzy ward continuous define the transformed sequence $\varphi(g_n)$

$$As \qquad \quad \phi \; (\; g_n) \;\; = \begin{cases} \phi(f_n) \;, & \text{if } n = 2k-1 \, \text{where } k \text{ is a positive integer} \\ \phi(f_0) \;, & \text{if } n \text{ is even} \end{cases}$$

Again $\varphi(g_n)$ is quasi-Cauchy,

Vol. 7, Issue 4, April 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$\begin{split} \text{For N*}(\phi \left(\, g_{n+1} \, \right) \text{-} \, \phi(\, g_n \,), \, h \, \text{,t}) \\ &= \, N*(\, \phi \left(\, g_{n+1} \, \right) \text{-} \, \phi\left(\, f_{n+1} \, \right) + \phi\left(\, f_{n+1} \, \right) \\ &\quad + \phi\left(\, f_n \, \right) \text{-} \, \phi\left(\, g_n \, \right), \, h, \frac{t}{\underline{a}} + \frac{t}{\underline{a}} + \frac{t}{\underline{a}} + \frac{t}{\underline{a}} \\ &\leq \, \max \, \left\{ N* \left(\phi \left(\, g_{n+1} \, \right) \text{-} \, \phi\left(\, f_{n+1} \, \right) h, \frac{t}{\underline{a}} \, \right), \\ &\quad N* \left(\phi \left(\, f_n \, \right) \text{-} \, \phi\left(\, f_n \, \right), \, h, \frac{t}{\underline{a}} \, \right) N* \left(\, \phi\left(\, f_{n+1} \, \right) \text{-} \, \phi\left(\, g_n \, \right), \, h, \frac{t}{\underline{a}} \, \right) \right\} \\ &< r \end{split}$$

If n is odd,

$$N^*(\phi \ (\ g_{n+1}\) \ \text{-}\ \phi(\ g_n\),\ h\ ,t) \ = \ N^*(\ \phi \ (\ f_{n+1}\) \ \text{-}\ \phi \ (\ g_n\),\ h,\ t) \\ < \ r$$

If n is even,

$$\begin{split} N^*(\phi \left(\right. g_{n+1} \left) - \phi(\left. g_n \right), h \left. , t \right) \\ &= N^*(\left. \phi \left(\right. f_0 \right) - \phi \left(\right. f_{n+1} \right) + \phi \left(\right. f_{n+1} \right) + \\ & \phi \left(\right. f_n \left) - \phi \left(\right. f_n \right) - \phi \left(\right. f_0 \right), h, \frac{t}{2} + \frac{t}{2} + \frac{t}{2} \right) \\ &= max \{ \left. N^* \left(\phi \left(\right. f_0 \right) - \phi \left(\right. f_{n+1} \right) h, \frac{t}{2} \right), N^* \left(\left. \phi \left(\right. f_n \right) - \phi \left(\right. f_0 \right), \\ & h, \frac{t}{2} \right), \left(N^*(\phi \left(\right. f_{n+1} \right) - \phi \left(\right. f_n \right), h, \frac{t}{2} \right), \} \\ &\leq \left(N^*(\phi \left(\right. f_{n+1} \right) - \phi \left(\right. f_n \right), h, t \right) \\ &< r \end{split}$$

Hence { ϕ (f_n)} is a quasi - cauchy sequence and $\,N*(\phi$ (g_{n+1}) - $\phi(\,g_n\,),\,h\,$,t) < r. By construction of $\,g_n\,$ it follows that $\,N*(\phi$ (f_{n+1}) - ϕ (f_0) , h, t) < r. Thus ϕ (f_{n+1}) converges to $\phi(\,f_0\,).$ andso ϕ is sequentially continuous on A.

Theorem3.2

Let $N^*(F(X), N_1^*)$ and $N^*(F(Y), N_2^*)$ be a 2- fuzzy 2- anti normed linear space and A be a fuzzy ward compact subspace of F(X). If $\varphi: F(X) \rightarrow F(Y)$ is fuzzy ward continuous on A then $\varphi(A)$ is fuzzy ward compact.

Proof

Given A be a fuzzy ward compact subspace of F(X), then, there exist a subsequence $\{g_{n_k}\}$ of $\{g_n\}$ satisfying $N^*(\Delta(g_{n_k}), h, t) < r$. for every $h \in F(X)$ and $t \in (0,1)$

Let $\{\phi(\:g_{n_k}\:)\} = \{\:\: f_{n_k}\:\}, \text{then } \{\:\: f_{n_k}\:\} \text{ is a subsequence of a sequence } \{\phi(\:g_{n_k}\:)\}$

Consider N*(
$$\Delta f_{n_k} h, t$$
) = N*($f_{n_{k+l}} - f_{n_k} h, t$)
= N*(ϕ ($g_{n_{k+l}}$) - ϕ (g_{n_k}), h , t)
< r

Because ϕ is fuzzy ward continuous. $\{\phi(\,g_{n_k}\,)\}$ is quasi-Cauchy. Hence $N^*(\,\Delta\,f_{n_k}\,$, h , t) < r which implies { f_{n_k} } is quasi-Cauchy

Theorem3.3

If the function $\varphi : F(X) \rightarrow F(Y)$ is uniformly continuous on a subspace A of F(X) then it is fuzzy ward continuous on A

Proof

Given ϕ is uniformly continuous on A and let $\{f_n\}$ be quasi- Cauchy sequence in A For given $\epsilon > 0$ there exist $\delta > 0$ such that $N_2*(\phi(f_1)-\phi(f_2),h,t) < \epsilon$ for every $h \in F(Y)$ and $t \in (0,1)$ whenever $N_1*(f_1,f_2),g,t) < \delta$ for every $f_1,f_2 \in A$ and $g \in F(X)$. Now to prove that ϕ is fuzzy ward continuous on A.

Vol. 7, Issue 4, April 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Let $\{f_n\}$ be a quasi Cauchy sequence in A, then

$$N_1*(f_{n+1} - f_n), g, t) < \delta$$
. From the above condition,

 $N_2*(\phi\ (f_{n+1}\)\text{-}\ \phi\ (f_n)\ ,\ g\ ,\ t)<\varepsilon\quad \text{which implies that, }N_2*(\ \Delta\ \phi\ (f_n)\ ,\ g\ ,\ t)<\epsilon$ Hence $\Delta\ \phi\ (f_n)\$ is a quasi -Cauchy sequence and so $\ \phi$ is a fuzzy ward continuous on A.

Theorem3.4

If a function $\varphi: N_1^* \to N_2^*$ is uniformly continuous on a subspace A of F(X) then it is fuzzy ward continuous on A.

Proof

Given ϕ is uniform continuous on A. For given $\varepsilon \in (0,1)$ there exits $\delta > (0,1)$ such that $N_2^*(\phi(f_1)-\phi(f_2),h,t) < \varepsilon$ for every $h \in F(Y)$ and $t \in (0,1)$ whenever $N_1^*(f_1,f_2),g,t) < \delta$ for every $f_1,f_2 \in A$ and $t \in (0,1)$.

Now to prove that φ is fuzzy ward continuous on A.

Let $\{f_n\}$ be a quasi Cauchy sequence in A. then $N_1*((f_{n+1}-f_n),g,t)<\delta$, then by the hypothesis $N_2*(\phi(f_{n+1})-\phi(f_n),g,t)<\epsilon$

$$\begin{array}{ll} \text{Let} & \{ \ \phi \ (f_n) \ \} = \{ \ g_n \ \} \ \text{and} \ \Delta \ (\ g_n \) = g_{n+1} \ \text{-} \ g_n \\ \text{Consider} & N_2 ^* (\ \Delta \ g_n \ , \ h \ , t) = N_2 ^* (\ g_{n+1} \ \text{-} \ g_{n,} \ , h \ , t) \\ & = N_2 ^* (\ \phi \ (f_{n+1} \) \text{-} \ \phi \ (f_n) \ , h \ , t) \\ & \leq \varepsilon. \end{array}$$

Therefore $N_2*(\ \Delta\ \phi\ (f_n\),\ h\ ,\ t)<\varepsilon$ whenever $N_1*(\ \Delta\ f_n\ ,\ g\ ,\ t)<\delta$ and so ϕ is fuzzy ward continuous on A.

Theorem 3.5

The image of a fuzzy ward compact space under a uniform continuous map is fuzzy ward compact.

Proof

Let ϕ : F(X) \rightarrow F(Y) be uniform continuous and let A be a fuzzy ward compact subspace of F(Y)

Consider a sequence $\{g_n\}$ in $\phi(A)$ provided $g_n = \phi(f_n)$ where $\{f_n\}$ is a sequence in A. Since A is fuzzy ward compact, $\{f_n\}$ has a quasi Cauchy subsequence $\{f_{n_k}\}$ therefore

$$N_1*(\ \Delta \, f_{n_k}$$
 , h , $t) \le \epsilon \ \ \text{For given } \epsilon \ \ \varepsilon \ (0,\!1), \, \text{there exist } \delta \ \varepsilon \ (0,\!1) \, \, \text{such}$

that

$$N_2*(\ \Delta\ \phi(\ f_{n_k}\),g\ ,t)<\epsilon,$$
 since $\ \Delta\ \phi(\ f_{n_k}\),$ is quasi-Cauchy subsequence.

Hence $\varphi(A)$ is a fuzzy ward compact.

Theorem3.6

Let $\{ \phi_n \}$ be a sequence of uniform continuous functions defined on a subspace A of F(X) to F(Y) and if $\{ \phi_n \}$ converges uniformly to ϕ then ϕ is uniformly continuous.

Proof

Using uniform convergence of $\{ \phi_n \}$ choose $\epsilon > 0$ then there exist a positive integer N such that $N^*(\phi_n(f_1) - \phi_n(f_2), h, t) < \epsilon$ where $n \ge N$ and $f, h \in A$.

Using the uniform continuity of ϕ_n on A for a given $\epsilon \in (0,1)$ there exists $\delta \in (0,1)$ such that $N_2*(\phi_N\ (f_1)-\ \phi_N\ (f_2),\ h,\ t\)<\epsilon$ for f_1 , $f_2\in A$ and $h\in F(Y)$ provided $N_1*((\ f_1-f_2),\ g\ ,t)<\delta.$

$$\begin{split} \text{Then N_2*($ $\phi(f_1)$- $\phi(f_2)$, h, t) &= N_2 *($ $\phi(f_1)$- ϕ_N (f_1)+ ϕ_N (f_1)- ϕ_N (f_2)+ ϕ_N (f_2)- $\phi(f_2)$, h, t) \\ &\leq \text{max } \{N_2 *(\phi(f_1)$- ϕ_N (f_1), h, $\frac{t}{3}$), $N_2 *($\phi_N$ (f_2)- $\phi(f_2)$, h, $\frac{t}{3}$), $N_2 *($\phi_N$ (f_2)- $\phi(f_2)$, h, $\frac{t}{3}$)}\} \end{split}$$

Vol. 7, Issue 4, April 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

< 8

 $N_2*(\phi(f_1)-\phi(f_2),h,t) < \epsilon$ for every $h \in F(Y)$ whenever $N_1*((f_1-f_2),g,t) < \delta$ so, ϕ is uniformly continuous on A.

Uniform limit theorem for fuzzy ward continuity Theorem 3.7

Let $\{ \phi_n \}$ be a sequence of fuzzy ward continuous functions defined on a subspace A of a fuzzy 2- normed linear space F(X) to F(Y) and if $\{ \phi_n \}$ is uniformly convergent to a function ϕ then ϕ is fuzzy ward continuous.

Proof

We assert that ϕ is fuzzy ward continuous on A. Let $\{f_n\}$ be a quasi-Cauchy sequence in A. As $\{\ \phi_n\ \}$ uniformly converges to ϕ for $\epsilon\in(0,1)$ there exist a positive integer N such that

 $N^*(\ \phi_n\ (f_n)\text{-}\ \phi(f_n\),\ h,\ t)<\frac{\varepsilon}{3}\ .\ \text{Since}\ \phi_N\ \ \text{is fuzzy ward continuous on } A\ \text{there exist a}$ positive integer $n_0\geq N$ such that $N^*(\ \phi_n\ (f_{n+1})\text{-}\ \phi_N(f_n),\ h,\ t)<\frac{\varepsilon}{3}\ \ \text{where every } n_0\geq N.$ and $h\in F(Y),\ \epsilon\in(0,1)$

$$\begin{split} N_2 * (\ \phi(f_{n+1}) \text{--} \ \phi(f_n \), \ h, \ t) &= \ N_2 * (\ \phi(f_{n+1}) \text{--} \ \phi_N \left(f_{n+1}\right) \text{+-} \ \phi_N \left(f_{n+1}\right) \text{--} \ \phi_N \left(f_n \) \text{+-} \ \phi_N \left(f_n \) \text{--} \ \phi(f_n \), \ h, t) \\ &\leq max \ \left\{ \ N_2 * (\ \phi(f_{n+1}) \text{--} \ \phi_N \left(f_{n+1}\right), \ h \ , \frac{t}{2} \) \ , \ N_2 * (\phi_N \left(f_{n+1} \) \text{--} \ \phi_N \left(f_n \), \ h \ , \frac{t}{2} \) \right) \\ &\qquad \qquad , N_2 * (\phi_N \left(f_n \) \text{--} \ \phi(f_n \), \ h \ , \frac{t}{2} \) \right\} \end{split}$$

3 >

 $N_2*(\ \phi(f_{n+1})\text{-}\ \phi(f_n\),\ h,\ t)<\epsilon\ \text{for every}\ n_0\geq N\ \text{and hence}\ \phi\ \text{is a fuzzy ward continuous on}\ A.$

References

- [1] Burton, J.Coleman, Quasi-cauchy sequences, American Mathematical Monthly, 117(4) (2010) 328-333.
- [2] H.Cakalli, N -ward continuity, Abstract and Applied Analysis, (2012)80456.
- [3] P.Das, E.Savas, S.Bhunia, Two valued measure and some new double sequence spaces in 2-normed spaces, *Czechoslovak Math. J.* 61(3)(2011),pp. 809-825.
- [4]. S.Gahler, Linear 2-normierte Raume, Mathematsche Nachrichten, 28(1964) 1-3.
- [5]. K.Menger, Unter Suchungen Ueberallgeine Metrik, Math. Ann. 100(1) (1928) 75-163.
- [6]. S.P.Mohiuddine, Some new results on approximation in fuzzy 2-normed space, *Mathematical Computing Modelling*, 53(5-6) (2011) 574-580.
- [7]. R.Pilakkt, S.Thirumangalath, Results in linear 2-normed spaces analogous to Baire's theorem and closed graph theorem, *International Journal of Pure and Applied Mathematics*,74(4) (2012) 509-517.
- [8]. R.M. Somasundaram and Thangaraj Beaula, Some aspects of 2 fuzzy 2-normed linear space, *Bulletin of Malaysian Mathematical Society*, 32(2) (2009) 211-222.
- [9]. Thangaraj Beaula and Lilly Esthar Rani, On fuzzy ward continuity in an intuitionstic 2-fuzzy 2-normed linerar space, *International journal of fuzzymathematical archive*. (2015) 6 (2), 207-213.
- [10]. B.Vulich, Ona generalized notion of convergence in a Banach space, Annals of Math. 38 (1973) 156-174.
- [11]. L.A.Zadeh, Fuzzy Sets, Information and Control, 8 (1965) 338-355.