Vol. 7, Issue 10, October 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

SUPRA B- M_I -CONTINUOUS AND SUPRA *B - M_I -CONTINUOUS MAPS IN SUPRA TOPOLOGICAL SPACES

¹Kalaivani M, ²Trinita Pricilla M

¹Research Scholar, ²Assistant Professor,

Department of Mathematics, Nirmala College for Women, Coimbatore, Tamil Nadu, India.

Abstract:

The aim of this paper is to introduce and investigate a new class of continuous and irresolute mapping in supra topological spaces namely supra b- m_i -continuous, supra *b - m_i -continuous, supra *b - m_i -closed and supra *b - m_i -closed sets and also studied some of its properties.

Keywords: Supra b- m_i -closed, supra b- m_i -closed, b- m_i -continuous, supra b- m_i -irresolute, supra b- m_i -irresolute.

1. Introduction:

In 1970, Levine [8] introduced the concept of generalized closed sets which formed a strong tool in the characterization of topological spaces. Andrijevic[1] derived a new class of generalized open sets in a topological space, the so called b- open sets. In 1983, Mashhour et al. [9] introduced supra topological spaces. In 2010, O.R. Sayed and Takashi Noiri [13] formulated the concept of supra b-open sets and supra b-continuity on topological spaces. In 2011, I. Arockiarani and M. Trinita Pricilla introduced $g^{\mu}b$ -closed[3], $g^{\mu}br$ -closed[4], T^{μ} -closed[5], $g^{\mu}b$ -continuous[2], $g^{\mu}br$ -continuous[2], T^{μ} -continuous[5] sets in supra topological spaces. F. Nakaoka and N. Oda[10] derived some applications of minimal open sets. Suwarnlatha Banasode and Mandakini Desurkar[14] introduced generalized minimal continuous maps in topological spaces. In this paper we use the notion of supra b-m_i-closed and supra b-m_i-closed sets and introduce supra b-m_i-continuous, supra b-m_i-continuous, supra b-m_i-continuous, supra b-m_i-irresolute and supra b-m_i-irresolute maps and their properties are derived. Also we investigated the relationship with the other continuous and irresolute maps in supra topological spaces.

2. Preliminaries:

Definition 2.1:[9] A subfamily μ of X is said to be a supra topology on X if

- i) $X, \phi \in \mu$
- ii) If $A_i \in \mu$ for all $i \in J$, then $\bigcup A_i \in \mu$. (X, μ) is called supra topological space. The elements of μ are called supra open sets in (X, μ) and complement of supra open set is called supra closed set and it is denoted by μ^c .

Vol. 7, Issue 10, October 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Definition 2.2:[9] The supra closure and supra interior of a set A are defined as

$$cl^{\mu}(A) = \bigcap \{B : B \text{ is supra closed and } A \subseteq B\}$$

int $(A) = \bigcup \{B : B \text{ is supra open and } A \supseteq B\}$

Definition 2.3:[13] Let (X, μ) be a supra topological space. A set A is called a supra b-open set if $A \subseteq cl^{\mu}(\operatorname{int}^{\mu}(A)) \cup \operatorname{int}^{\mu}(cl^{\mu}(A))$. The complement of a supra b-open set is called supra b-closed set.

Definition 2.4:[3] Let (X, μ) be supra topological space. A set A of (X, μ) is called supra generalized b-closed set (simply $g^{\mu}b$ -closed) if $bcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open. The complement of supra generalized b-closed set is supra generalized b-open set.

Definition 2.5:[4] A subset A of a supra topological space (X, μ) is called supra generalized b-regular closed set (simply $g^{\mu}br$ -closed) if $bcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra regular open. The complement of supra generalized b-regular closed set is supra generalized b-regular open set.

Definition 2.6:[5] A subset A of (X, μ) is called T^{μ} -closed set if $bcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra $g^{\mu}b$ -open in (X, μ) . The complement of T^{μ} -closed set is called T^{μ} -open set.

Definition 2.7:[2] A mapping $f:(X,\mu_1) \to (Y,\mu_2)$ is said to be $g^{\mu}b$ -continuous if $f^{-1}(V)$ is $g^{\mu}b$ -closed in X for every supra closed set V of Y.

Definition 2.8:[2] A mapping $f:(X,\mu_1) \to (Y,\mu_2)$ is said to be $g^{\mu}br$ -continuous if $f^{-1}(V)$ is $g^{\mu}br$ -closed in X for every supra closed set V of Y.

Definition 2.9:[5] A mapping $f:(X,\mu_1) \to (Y,\mu_2)$ is said to be T^{μ} -continuous if $f^{-1}(V)$ is T^{μ} -closed in X for every supra closed set V of Y.

Definition 2.10: A proper nonempty subset A of a topological space (X, τ) is called

- i) A minimal open[10] (minimal closed[12]) set is any open (resp.closed) subset of X which is contained in A, is either A or ϕ .
- ii) A maximal open[11] (maximal closed[12]) set is any open (resp.closed) set which contains A, is either A or X.

Definition 2.11:[14] A mapping $f:(X,\tau) \to (Y,\sigma)$ is called minimal continuous map if the inverse image of every minimal open (or minimal closed) set in Y is open (or closed) set in X.

Vol. 7, Issue 10, October 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Definition 2.12:[14] A mapping $f:(X,\tau)\to(Y,\sigma)$ is called maximal continuous map if the inverse image of every maximal open (or maximal closed) set in Y is open (or closed) set in X.

Definition 2.13:[14] A mapping $f:(X,\tau)\to (Y,\sigma)$ is called minimal irresolute map if the inverse image of every minimal open (or minimal closed) set in Y is minimal open (or minimal closed) set in X.

Definition 2.14:[14] A mapping $f:(X,\tau)\to (Y,\sigma)$ is called maximal irresolute map if the inverse image of every maximal open (or maximal closed) set in Y is maximal open (or maximal closed) set in X.

Definition 2.15:[6] For any subset A of a topological space (X, τ) , is defined to be the intersection of all the g-closed sets containing A in a topological space (X, τ) .

Definition 2.16:[7] A subset A of a supra topological space (X, μ) is called supra b- m_i -closed if $bcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra m_i -open set in (X, μ) .

Definition 2.17:[7] A subset A of a supra topological space (X, μ) is called supra *b - m_i -closed if $bcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra m_i -b open set in (X, μ) .

3. Supra b-m_i-continuous and supra *b-m_i-continuous maps:

Definition 3.1: A mapping $f:(X,\mu_1) \to (Y,\mu_2)$ is called supra minimal continuous map if the inverse image of every supra minimal open (or supra minimal closed) set in Y is supra open (or supra closed) set in X.

Definition 3.2: A mapping $f:(X,\mu_1) \to (Y,\mu_2)$ is called supra maximal continuous map if the inverse image of every supra maximal open (or supra maximal closed) set in Y is supra open (or supra closed) set in X.

Definition 3.3: A mapping $f:(X,\mu_1) \to (Y,\mu_2)$ is called supra b minimal continuous (briefly supra b-m_i-continuous) map if the inverse image of every supra minimal closed set in Y is supra b-m_i-closed set in X.

Definition 3.4: A mapping $f:(X,\mu_1) \to (Y,\mu_2)$ is called supra *b minimal continuous (briefly supra *b-m_i-continuous) map if the inverse image of every supra minimal closed set in Y is supra *b-m_i-closed set in X.

Definition 3.5: A mapping $f:(X,\mu_1) \to (Y,\mu_2)$ is called supra minimal T continuous (briefly m_i - T^{μ} -continuous) map if the inverse image of every supra minimal open set in Y is T^{μ} -open set in X.

Vol. 7, Issue 10, October 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Definition 3.6: A mapping $f:(X,\mu_1) \to (Y,\mu_2)$ is called supra maximal T continuous (briefly m_a - T^{μ} -continuous) map if the inverse image of every supra maximal open set in Y is T^{μ} -open set in X.

Definition 3.7: A mapping $f:(X,\mu_1) \to (Y,\mu_2)$ is called minimal $g^{\mu}b$ continuous (briefly m_i - $g^{\mu}b$ -continuous) map if the inverse image of every supra minimal open set in Y is $g^{\mu}b$ -open set in X.

Definition 3.8: A mapping $f:(X,\mu_1) \to (Y,\mu_2)$ is called maximal $g^{\mu}b$ continuous (briefly m_a - $g^{\mu}b$ -continuous) map if the inverse image of every supra maximal open set in Y is $g^{\mu}b$ -open set in X.

Definition 3.9: A mapping $f:(X,\mu_1) \to (Y,\mu_2)$ is called minimal $g^{\mu}br$ continuous (briefly m_i - $g^{\mu}br$ -continuous) map if the inverse image of every supra minimal open set in Y is $g^{\mu}br$ -open set in X.

Definition 3.10: A mapping $f:(X,\mu_1)\to (Y,\mu_2)$ is called maximal $g^{\mu}br$ continuous (briefly $m_{a^-}g^{\mu}br$ -continuous) map if the inverse image of every supra maximal open set in Y is $g^{\mu}br$ -open set in X.

Theorem 3.11: Every supra *b -m_i-continuous is ${\rm m_a}$ - T^{μ} -continuous.

Proof: Let $f:(X,\mu_1) \to (Y,\mu_2)$ be any supra *b -m_i-continuous map and U be any supra maximal open set in Y then U^c is minimal closed set in Y. Therefore $f^{-1}(U^c)$ is supra *b -m_i-closed set in Y. As every supra *b -m_i-closed set is T^μ -closed, $f^{-1}(U^c) = [f^{-1}(U)]^c$ is T^μ -closed set in Y. Hence f is m_a- T^μ -continuous.

Theorem 3.12:

- i) Every supra b -m_i-continuous is m_a - T^{μ} -continuous.
- ii) Every supra b -m_i-continuous is m_a $g^{\mu}b$ -continuous.
- iii) Every supra *b -m_i-continuous is m_a $g^{\mu}b$ -continuous.
- iv) Every supra b-m_i-continuous is m_a $g^{\mu}br$ -continuous.
- v) Every supra *b -m_i-continuous is m_a $g^{\mu}br$ -continuous.
- vi) Every supra *b -m_i-continuous is supra b -m_i-continuous.

Proof: The proof is similar to theorem 3.11.

From the above theorems we have the following diagrammatic representation.

Vol. 7,Issue 10, October 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Theorem 3.13:

- i) If $f:(X,\mu_1) \to (Y,\mu_2)$ is any supra mapping. Then the following statements are equivalent.
 - a) f is supra b-m_i-continuous map.
 - b) The inverse image of every supra maximal open set in Y is supra b- m_a -open set in X.
 - c) For each $x \in X$ and each supra maximal open set N in Y containing f(x), there exists supra b-m_a-open set M containing x in X such that $f(M) \subseteq N$.
- ii) If $f:(X,\mu_1)\to (Y,\mu_2)$ is supra b-m_i-continuous map, then for every subset A of X, $f[cl^{*\mu}(A)]\subset cl^{\mu}[f(A)]$.
- iii) If $f:(X,\mu_1)\to (Y,\mu_2)$ is supra b-m_i-continuous map, then for every subset B of Y, $cl^{*\mu}[f^{-1}(B)]\subseteq f^{-1}[cl^{\mu}(B)]$.

Proof:

- i) (a) \Rightarrow (b): Let N be any supra maximal open set in Y. Then N^c is minimal closed set in Y. By (a) $f^{-1}(N^c) = [f^{-1}(N)]^c$ is supra b-m_i-closed set in X. It follows that $f^{-1}(N)$ is supra b-m_a-open set in X.
- (b) \Rightarrow (c): For each $x \in X$, let N be any supra maximal open set in Y containing f(x). So $x \in f^{-1}(N)$ and by (b) $f^{-1}(N)$ is supra b-m_a-open set in X. Let $f^{-1}(N) = M$. Then $f(M) = f[f^{-1}(N)] \subseteq N$ which implies that $f(M) \subseteq N$.
- (c) \Rightarrow (a): For each $x \in X$, let N be any supra maximal open set in Y containing f(x). Then N^c is supra minimal closed set in Y. By (c) there exists a supra b-m_a-open set M such that

Vol. 7,Issue 10, October 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

 $f(M) \subseteq N$. Then $f(M) = f[f^{-1}(N)] \subseteq N$. Then $M = f^{-1}(N)$ is a supra b-m_a-open set in X. Therefore $[f^{-1}(N)]^c = f^{-1}(N^c)$ is supra b-m_i-closed set in X. Hence f is supra b-m_i-continuous map.

- ii) Let $f:(X,\mu_1) \to (Y,\mu_2)$ is supra b-m_i-continuous map such that for any $A \subseteq X$. Let $y \in f[cl^{*\mu}(A)]$. Let N be supra maximal open set in Y containing y. Then there exists a point $x \in X$ and a supra b-m_a-open set M such that $y = f(x) \in f[cl^{*\mu}(A)]$. So $x \in cl^{*\mu}(A)$ and $f(M) \subseteq N$. Here M is a supra b-neighborhood of x. Since $x \in cl^{*\mu}(A)$, $A \cap M \neq \emptyset$ holds and hence $f(A \cap M) = f(A) \cap f(M) = f(A) \cap N \neq \emptyset$. Therefore $y = f(x) \in f(A) \subseteq cl^{\mu}[f(A)]$. Hence $f[cl^{*\mu}(A)] \subseteq cl^{\mu}[f(A)]$ for every subset A of X.
- iii) Let $f:(X,\mu_1)\to (Y,\mu_2)$ is supra b-m_i-continuous map and B be any subset of Y. Then $f(B)\subseteq X$. Putting $A=f^{-1}(B)$ in (ii) above, we get $f[cl^{*\mu}(f^{-1}(B))]\subseteq cl^{\mu}[f(f^{-1}(B))]$. Therefore $cl^{*\mu}[f^{-1}(B)]\subseteq f^{-1}[cl^{\mu}(B)]$.

Theorem 3.14:

- i) If $f:(X,\mu_1) \to (Y,\mu_2)$ is any supra mapping. Then the following statements are equivalent.
 - a) f is supra *b -m_i-continuous map.
 - b) The inverse image of every supra maximal open set in Y is supra *b -m_a-open set in X.
 - c) For each $x \in X$ and each supra maximal open set N in Y containing f(x), there exists supra b-ma-open set M containing x in X such that $f(M) \subseteq N$.
- ii) If $f:(X,\mu_1) \to (Y,\mu_2)$ is supra *b -m_i-continuous map, then for every subset A of X, $f[cl^{*\mu}(A)] \subseteq cl^{\mu}[f(A)]$.
- iii) If $f:(X,\mu_1) \to (Y,\mu_2)$ is supra b-m_i-continuous map, then for every subset B of Y, $cl^{*\mu}[f^{-1}(B)] \subset f^{-1}[cl^{\mu}(B)]$.

Proof: The proof is similar to theorem 3.13.

Remark 3.15: The composition of two supra b- m_i -continuous(supra b- m_i -continuous) maps need not be supra b- m_i -continuous(supra b- m_i -continuous).

Definition 3.16: A mapping $f:(X,\mu_1) \to (Y,\mu_2)$ is called supra minimal irresolute map if the inverse image of every supra minimal open (or supra maximal closed) set in Y is supra minimal open (or supra maximal closed) set in X.

Vol. 7, Issue 10, October 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Definition 3.17: A mapping $f:(X,\mu_1) \to (Y,\mu_2)$ is called supra maximal irresolute map if the inverse image of every supra maximal open (or supra minimal closed) set in Y is supra maximal open (or supra minimal closed) set in X.

Definition 3.18: A mapping $f:(X,\mu_1) \to (Y,\mu_2)$ is called supra b minimal irresolute (briefly supra b-m_i-irresolute) map if the inverse image of every supra b-m_i-closed set in Y is supra b m_i-closed set in X.

Definition 3.19: A mapping $f:(X,\mu_1) \to (Y,\mu_2)$ is called supra *b minimal irresolute (briefly supra *b -m_i-irresolute) map if the inverse image of every supra *b -m_i-closed set in *Y* is supra *b -m_i-closed set in *X*.

Theorem 3.20:

- i) Every supra b -m_i-irresolute mapping is supra b -m_i-continuous.
- ii) Every supra *b -m_i-irresolute mapping is supra *b -m_i-continuous.

Proof: It is obvious.

Theorem 3.21: If $f:(X,\mu_1) \to (Y,\mu_2)$ is supra b-m_i-continuous map and $h:(Y,\mu_2) \to (Z,\mu_3)$ is supra maximal irresolute map, then $h \circ f:(X,\mu_1) \to (Z,\mu_3)$ is supra b-m_i-continuous map.

Proof: Let N be supra minimal closed set in Z. Then N^c is supra maximal open set in Z. Since $h: (Y, \mu_2) \to (Z, \mu_3)$ is supra maximal irresolute map, $h^{-1}(N^c) = [h^{-1}(N)]^c$ is supra maximal open set in Y. Therefore $h^{-1}(N)$ is supra minimal closed set in Y. But $f: (X, \mu_1) \to (Y, \mu_2)$ is supra b-m_i-continuous map. Therefore $f^{-1}[h^{-1}(N)] = (h \circ f)^{-1}(N)$ is supra b-m_i-closed set in X. Hence $h \circ f: (X, \mu_1) \to (Z, \mu_3)$ is supra b-m_i-continuous map.

Theorem 3.22: If $f:(X,\mu_1) \to (Y,\mu_2)$ is supra *b -m_i-continuous map and $h:(Y,\mu_2) \to (Z,\mu_3)$ is supra maximal irresolute map, then $h \circ f:(X,\mu_1) \to (Z,\mu_3)$ is supra *b -m_i-continuous map.

Proof: It is similar to theorem 3.21.

Theorem 3.23:

- i) If $f:(X,\mu_1) \to (Y,\mu_2)$ is any supra mapping. Then the following statements are equivalent.
 - a) f is supra b- m_i -irresolute map.

Vol. 7,Issue 10, October 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

- b) The inverse image of every supra b- m_a -open set in Y is supra b- m_a -open set in X.
- c) For each $x \in X$ and each supra b-m_a-open set N in Y containing f(x), there exists supra b-m_a-open set M containing x in X such that $f(M) \subseteq N$.
- ii) If $f:(X,\mu_1)\to (Y,\mu_2)$ is supra b-m_i-irresolute map, then for every subset A of X, $f[cl^{*\mu}(A)]\subseteq cl^{\mu}[f(A)]$.
- iii) If $f:(X,\mu_1)\to (Y,\mu_2)$ is supra b-m_i-irresolute map, then for every subset B of Y, $cl^{*\mu}[f^{-1}(B)]\subseteq f^{-1}[cl^{\mu}(B)]$.

Proof: It follows from the theorem 3.13.

Theorem 3.24:

- i) If $f:(X,\mu_1) \to (Y,\mu_2)$ is any supra mapping. Then the following statements are equivalent.
 - a) f is supra *b -m_i-irresolute map.
 - b) The inverse image of every supra *b -m_a-open set in Y is supra *b -m_a-open set in X.
 - c) For each $x \in X$ and each supra *b -m_a-open set N in Y containing f(x), there exists supra *b -m_a-open set M containing x in X such that $f(M) \subset N$.
- ii) If $f:(X,\mu_1) \to (Y,\mu_2)$ is supra $b-m_i$ -irresolute map, then for every subset A of X, $f[cl^{*\mu}(A)] \subseteq cl^{\mu}[f(A)]$.
- iii) If $f:(X,\mu_1)\to (Y,\mu_2)$ is supra $b-m_i$ -irresolute map, then for every subset B of Y, $cl^{*\mu}[f^{-1}(B)]\subset f^{-1}[cl^{\mu}(B)]$.

Proof: It follows from the theorem 3.23.

Theorem 3.25: If $f:(X,\mu_1) \to (Y,\mu_2)$ is supra b-m_i-irresolute map and $h:(Y,\mu_2) \to (Z,\mu_3)$ is supra b-m_i-irresolute map, then $h \circ f:(X,\mu_1) \to (Z,\mu_3)$ is supra b-m_i-irresolute map.

Proof: Let N be supra b-m_i-closed set in Z. Then by hypothesis $h^{-1}(N)$ is supra b-m_i-closed set in Y. But $f:(X,\mu_1)\to (Y,\mu_2)$ is supra b-m_i-irresolute map. Therefore $f^{-1}[h^{-1}(N)]=(h\circ f)^{-1}(N)$ is supra b-m_i-closed set in X. Hence $h\circ f:(X,\mu_1)\to (Z,\mu_3)$ is supra b-m_i-irresolute map.

Theorem 3.26: If $f:(X,\mu_1)\to (Y,\mu_2)$ is supra *b -m_i-irresolute map and $h:(Y,\mu_2)\to (Z,\mu_3)$ is supra *b -m_i-irresolute map, then $h\circ f:(X,\mu_1)\to (Z,\mu_3)$ is supra *b -m_i-irresolute map.

Vol. 7,Issue 10, October 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Proof: Let N be supra *b -m_i-closed set in Z. Then by hypothesis $h^{-1}(N)$ is supra *b -m_i-closed set in Y. But $f:(X,\mu_1)\to (Y,\mu_2)$ is supra *b -m_i-irresolute map. Therefore $f^{-1}[h^{-1}(N)]=(h\circ f)^{-1}(N)$ is supra *b -m_i-closed set in X. Hence $h\circ f:(X,\mu_1)\to (Z,\mu_3)$ is supra *b -m_i-irresolute map.

Theorem 3.27: If $f:(X,\mu_1) \to (Y,\mu_2)$ is supra b-m_i-irresolute map and $h:(Y,\mu_2) \to (Z,\mu_3)$ is supra b-m_i-continuous map, then $h \circ f:(X,\mu_1) \to (Z,\mu_3)$ is supra b-m_i-continuous map.

Proof: Let N be supra minimal closed set in Z. Then by hypothesis $h^{-1}(N)$ is supra b- m_i -closed set in Y. But $f:(X,\mu_1)\to (Y,\mu_2)$ is supra b- m_i -irresolute map. Therefore $f^{-1}[h^{-1}(N)]=(h\circ f)^{-1}(N)$ is supra b- m_i -closed set in X. Hence $h\circ f:(X,\mu_1)\to (Z,\mu_3)$ is supra b- m_i -continuous map.

Theorem 3.28: If $f:(X,\mu_1) \to (Y,\mu_2)$ is supra *b -m_i-irresolute map and $h:(Y,\mu_2) \to (Z,\mu_3)$ is supra *b -m_i-continuous map, then $h \circ f:(X,\mu_1) \to (Z,\mu_3)$ is supra *b -m_i-continuous map.

Proof: Let N be supra minimal closed set in Z. Then by hypothesis $h^{-1}(N)$ is supra *b -m_i-closed set in Y. But $f:(X,\mu_1)\to (Y,\mu_2)$ is supra *b -m_i-irresolute map. Therefore $f^{-1}[h^{-1}(N)]=(h\circ f)^{-1}(N)$ is supra *b -m_i-closed set in X. Hence $h\circ f:(X,\mu_1)\to (Z,\mu_3)$ is supra *b -m_i-continuous map.

References:

- [1] D. Andrijevic, On b- open sets, mat. Vesnik 48(1996), no.1-2, 59-64.
- [2] I. Arockiarani and M.Trinita Pricilla, $g^{\mu}b$ Homeomorphisms in Supra Topological spaces International Journal of Theoretical and applied physics, 2(1), 2012, 49-60.
- [3] I. Arockiarani and M. Trinita Pricilla, On supra generalized b-closed sets, Antarctica Journal of Mathematics, Volume 8(2011) 115-121.
- [4] I. Arockiarani and M. Trinita Pricilla, On generalized b- regular closed sets, in supra topological spaces, Asian Journal of current engineering and mathematics (1), 2012, 1-4.
- [5] I. Arockiarani and M. Trinita Pricilla, On supra T-closed sets, International Journal of Mathematics Archive -2(8), 2011, 1376-1380.
- [6] W. Dunham. A new closure operator for non T1 topologies, Kyunpook Math. J. 22(1982),
 - 375 381.
- [7] Kalaivani. M and Trinita Pricilla. M, Supra b-m_i-closed and Supra *b-m_i-closed Sets in Supra Topological spaces.(To Appear)

Vol. 7, Issue 10, October 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

- [8] N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, 1970:19:89-96.
- [9] A. S. Mashhour, A. A. Allam, F. S. Mohamoud and F. H. Khedr, On supra topological spaces, Indian J. Pure and Appl.Math.No.4, 14 (1983), 502-510.
- [10] F. Nakaoka and N. Oda, Some applications of minimal open sets, Int.J. Math. Math. Sci. 27(2001), 471-476.
- [11] F. Nakaoka and N.Oda, Some Properties of maximal open sets, Int.J.Math. Math. Sci. 21(2003), 1331-1340.
- \cite{Matter} F. Nakaoka. F and N. Oda, On minimal closed sets, Proceedings of topological spaces theory
 - and its applications", 5 (2003), 19-21.
- [13] O.R. Sayed and Takashi Noiri, On b-open sets and supra b- Continuity on topological spaces, European Journal of Pure and applied Mathematics, 3(2) (2010), 295-302.
- [14] Suwarnlatha Banasode and Mandakini Desurkar introduced generalized minimal continuous

maps in topological spaces, International Research Journal of Pure Algebra-4(12), 2014, 644-

647.