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  Abstract  

 
 

In this paper an attempt is being made to study 

generalization of codes in Gaussian channel and Reed 

Solomon Code. Here we will learn about communication 

over a channel of practical interest, in which the 

transmitted signal is subjected to Gaussian noise. This 

paper deals with the general principles behind error 

correcting codes (Reed- Solomon Codes) and their 

algorithms for encoding using these codes, and for 

decoding with error correction. R.S. Codes are non-binary 

cyclic codes that represent a subclass of Bose-Chaudhuri-

Hocquenghem (BCH) codes. These Codes are most 

frequently used digital error control codes in the world. 

 Gaussian Channel is an alphabet channel and time 

discrete channel which is a good model for 

communication as well as the basis of radio and satellite 

links etc. Shannon’s determination of the capacity of the 

linear Gaussian channel is a challenge to succeeding 

generations of researchers and this capacity is to be 

infinite (maximum) of the mutual information between 

input and output. Gaussian Channel can be easily 

converted into a discrete binary symmetric channel with 

crossover probability. In practice these ideas are used to 

convert continuous channel into discrete channel, the 

main advantage of discrete channel is ease of processing 

of the output signal for error correction. 
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1. Gaussian Channel 

 

  The most important continuous alphabet channel is the Gaussian channel 

depicted in figure 1.  This is a time discrete channel with output Yi at time i, where Yi is 

the sum of the input Xi and the noise Zi;  The noise Zi is drawn i.i.d. from a Gaussian 

distribution with variance N.  Thus  

  Yi = Xi + Zi,  Zi ~ N (0, N).  

                                                           
  Vijay Kumar, Assistant Professor-Mathematics, Beant College of Engineering and Technology 
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  The noise Zi is assumed to be independent of the signal Xi.  This channel 

is a good model for some common communication channels.  Without further conditions, 

the capacity of this channel may be infinite.  If the noise variance is zero, then the 

receiver receives the transmitted symbol perfectly.  Since X can take on any real value, 

the channel can transmit an arbitrary real number with no error if the noise variance is 

non-zero and there is no constraint on the input, we can choose an infinite subset of 

inputs arbitrarily far apart, so that they are distinguishable at the output with arbitrarily 

small probability of error.  Such a scheme has an infinite capacity as well.  Thus if the 

noise variance is zero or the input is unconstrained, the capacity of the channel is infinite.   

  The most common limitation of the input is an energy or power constraint.  

We assume an average power constraint.  For any codeword (x1, x2…., xn) transmitted 

over the channel, we require 

1 2

1

n
x p
in i




 

  This communication channel models many practical channels including 

radio and satellite links.  The additive noise in such channels may be due to a variety of 

causes.  However, by the central limit theorem, the cumulative effect of a large number 

of small random effects will be approximately normal, so the Gaussian assumption is 

valid in a large number of situations.  

  

Zi 

 

 

 

     

 Xi    Yi 

 

Figure 1: The Gaussian Channel 

 

  We first analyze a simple suboptimal way to use this channel.  Assume 

that we want to send I bit over the channel in 1 use of the channel.  Given the power 

constraint, the best that we can do is to send one of two levels P  or P .  The 

receiver looks at the corresponding received Y and tries to decide which of the two levels 

was sent.  Assuming both levels are equally likely (this would be the case if we wish to 

send exactly 1 bit of information), the optimum decoding rule is to decide that P   

was sent if  Y > 0 and decide P  was sent if Y < 0.  The probability of error with 

such a decoding scheme is  
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Where  (x) is the cumulative normal function  

  

2

1 2( )
2

t

x e dt


   

Using such a scheme, we have converted the Gaussian Channel into a discrete binary 

symmetric channel with crossover probability P.  Similarly, by using a four level input 

signal, we can convert the Gaussian channel into a discrete four input channel.  In some 

practical modulation schemes, similar ideas are used to convert the continuous channel 

into a discrete channel.  The main advantage of a discrete channel is ease of processing of 

the output signal for error correction, but some information is lost in the quantization.   

  We now define the (information) capacity of the channel as the maximum 

of the mutual information between the input and output over all distributions on the input 

that satisfy the power constraint. 

The information capacity of the Gaussian channel with power constraint P is  

  max ( : )
2( ) :

C I X Y

p x E x p





 

We can calculate the information capacity as follows: Expanding I (X; Y), we have  

  I (X; Y) = h(Y) – h (YX) 

      = h (Y – h (X + ZX)  

               = h (Y) – h (ZX)  

               = h (Y) – h (Z)  

Since Z is independent of X.  Now, h (Z) = 
2

1
log 2eN. Also,  

  EY
2 
=E(X + Z)

2
 = EX

2
 + 2EXEZ + EZ

2
 = P + N  

Since X and Z are independent and EZ = 0.  Given EY
2
 = P + N the entropy of Y is 

bounded by 
2

1
 log 2e (P + N) (the normal maximize the entropy for a given variance).  

  

Applying this result to bound the mutual information, we obtain  

  I(X; Y) = h (Y) – h (Z) 
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                              
2

1
 log 2e (P + N) - 

2

1
 log 2eN 

= 
2

1
 log 1

P

N

 
 

 
 

Hence the information capacity of the Gaussian channel is  

  
1

max ( ; ) log 1
22( ) :

P
C I X Y

N
p x Ex P

 
   

 

 

and the maximum is attained when X – MO, P.  We will now show that this capacity is 

also the supremum of the achievable rates for the channel.  The arguments are similar to 

the arguments for a discrete channel. 

2. Reed-Solomon Code 

 

 A Reed-Solomon for RS code over GF(q) is a BCH code of length N = q – 1 of 

course q is never 2.  Thus the length is the number of nonzero elements in the ground 

field.  We shall use N, K and D to denote the length dimension and minimum distance 

(using capital letters to distinguish them from the parameters of the binary codes which 

will be constructed later).   

  Since x
a-1

-1 = ( )

( )

x
GF

q







the minimal polynomial of ' is 

simply M
th

 (x) = x - '.  Therefore an RS code of length q – 1 and designed distance  has 

generator polynomial   

  g (x) = (x - 
b
) (x - 

b+1
) …. (x - 

b+-2
).                         (1) 

  Usually, but not always, b = 1.   

Examples.  (1) As usual take GF (4) = {0, 1, ,  = 
2
} with 

2
 +  + 1 = 0.  The RS 

code over GF (4) with N = 3 and designed distance 2 has g (x) = x - .  The 4
2
 code 

words are shown as follows: 

   000 10 0 1 

   01 0 10 111 

   0 10 1  

   01 01 1  

(Fig. 1) 

  (2) The RS code over GF (5) with N = 4 and designed distance 3.  We take 

 = 2 as the primitive element of GF(5), so that 

  g (x) = (x - ) (x - 2) = (x – 2) (x – 4) = x2 + 4x + 3 

  Some of the 25 code words are 3410, 2140, 1320, 0341, 1111 …… 
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  The dimension of an RS code is K = N – deg g (x) = N -  + 1.  The 

minimum distance D is by the BCH bound at least  = N – K + 1.  However it can’t be 

greater than this.  Therefore  

   D = N – K + 1  

  and RS codes are maximum distance separable.  It follows that the 

Hamming weight distribution of any RS code.   

RS codes are important for several reasons: 

(i) They are the natural codes to use when a code is required of length less than 

the size of the field.  For, being MDS, they the highest possible minimum 

distance.   

(ii) They are convenient for building other codes as we shall see.  For example 

they can be mapped into binary codes with surprisingly high minimum 

distance.  They are also used to constructing concatenated and Justesen codes.   

(iii) They are useful for correcting bursts of errors.   

Examples: 

1. Using the basis 1,  for GF (4) over GF(2).  0 maps into 00, 1 into 10,  01, 2 

11.  Then the [3, 2, 2] RS code over GF (4) of Fig. 1 becomes the [6, 4, 2] binary code of     

Fig. 2.  

  000000 100100 110001 110110 

   001001 011100 100011 101010 

   000111 111000 101101 010101  

   001110 010010 011011 111111 

(Fig. 2) 

2. Let c = (c0, c1……… cN-1) belong to an [N, K,D] RS code over GF(2m).  

Replace each ci by the corresponding binary m-tuple and add an overall parity check an 

each m-tuple.  The resulting binary code has parameters.   

 n = (m + 1) (2m – 1), k = mK. d2D=2(2m-K)   (2) 

  For any K = 1, ….2m – 2.  The same construction applied to the extended 

RS code gives  

  [(m+1)2m, mK,d  2 (2m – K + 1)]     (3) 

  binary codes, for K = 1…… 2m – 1  

e.g. From the [15, 10, 6] and [16, 10, 7] codes over GF(24) we obtain [75, 40, 12] and 

[80, 40, 14] binary codes.  Even though slightly better codes exist – we shall construct 

and [80, 40, 16] quadratic residue code.   

3. Using the basis 1, , 6 for GC(23) over GF (2) the mapping is 

0  000,  2  101,  5  011 

   1  100,  3  110,  6  001 

     010,  4  111,  

  Consider the [7, 5, 3] RS code over GF (23) with generator polynomial  
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  gN(x) = (x + 5) (x + n) 

   = 4 + x – x2  

  It is surprising that this is mapped onto the [21, 15, 3] binary BCH code 

with generator polynomial 

   g2 (y) = M(t) (y) = 1 + y + y2 + y4 + y6.   

  For g1 (x) itself is mapped onto the vector  

   111, 010, 100, 000, 000, 000, 000 

  Which is g2(y).  Also ag1(x) is mapped onto yg2(y), a2g1(x) onto 

y2g2(y), xg1(x) onto y3g2(y) and so on.   

  This is the only known, nontrivial, example of a cyclic code mapping in 

this way onto a cyclic code! 

 

Objectives of the study 

 

To discuss  

(1) the coding capacity of mismatched Gaussian Channels. 

(2)  how the errors in Gaussian Channels centered around the mutual information 

between the input and the output of a channel, and the minimum mean-

square error in estimating the input given the output.  

(3) encoding and  decoding of RS codes by different manners   

(4)  power Inequality in Gaussian Channels 

 

3. Mismatched Gaussian Channels 

 

Here we shall discuss the coding capacity of mismatched Gaussian Channels. A 

message X subject to the power constraint is given by 

  2 , . .
0

0

T
X dt P T a s

t
              (1) 

  Where P0 is a positive constant. This channel is an example of a 

mismatched time-continuous Gaussian feedback channel. It is said to be 

mismatched because the power constraint is not expressed in terms of the 

covariance of the noise process N, = ( )

0

t
a s dW

s , but in terms of the covariance 

of some other noise process, namely, N t = Wt. 

  Mismatched channels can arise in jamming situations, in problems 

where there is insufficient knowledge of the environment, or where one prefers 

to use a constraint not expressed in terms of the channel noise.  General results 

on the information capacity for such channels have been obtained by Baker 1983.  
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Here we are interested in evaluating the coding capacity of mismatched Gaussian 

channels. Here the  main result is Theorem 1: 

Theorem 1: 

  
1 10 0log 1 log 1

02 2
1 2

P P
C

 

   
      
   
   

 

  Mutual information is defined in the usual way: it is infinite if the 

joint measure xy induced by the two-dimensional process (X, Y) is not 

absolutely continuous with respect to the product measure x  y; otherwise, it 

is calculated by 

  ( ) log ( , ) ( , ).

d
xy

J x y d x yX Yxy xyd
x y


 

 

 
     
 

 

  The information capacity, defined as sup I (xy) subject to some 

constraint on X, is typically calculated with an average power constraint. The 

concept of coding capacity requires a constraint on the power of the (nonrandom) 

signal paths in-cluded in the codeword set. Thus the constraint
2

E x P , for 

example, is applicable for calculating information capacity, where .  is the 

RKHS(Reproducing Kernel Hilbert Space) of the channel noise. The 

corresponding constraint for coding capacity would be
2

x P , for each 

codeword x in the signal set. 

  When situations 1 = 2 , we get an exact expression for the coding 

capacity. An important example is when L = nnen  en, where {en, n  1} is a 

complete orthonormal sequence (CONS) in H and {n, n  1} is a bounded 

sequence of positive numbers, bounded away from zero, then 1 = 2, = limn 

n, and Theorem 1 gives an exact expression for coding capacity. This is the 

framework for the information capacity treatment. In particular, if N
~  is a 

Gaussian measure on BT which is mutually absolutely continuous with respect to 

N
~  and H

~
 is the RKHS of N

~ . Then, in the situation of Example 1, J*J = IH + 

S, where IN is the identity on H and S is Hilbert-Schmidt.  It then follows that 1 

= 2 = 1 and the coding capacity is the same as in the matched channel.  Theorem 

1: Which represents an extension of the coding capacity results of McKeague 

(1984) in two directions: to mismatched Gaussian channels and to nonwhite 

Gaussian channels, respectively. As an illustration of Theorem 1 we note that the 

coding capacity of the channel in the example is given by 
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11 0log
0 2

2

p
C



 
 
 
   

4. Errors in Gaussian Channels 

 

Here we centered around the mutual information between the input and the 

output of a channel, and the minimum mean-square error (MMSE) in estimating 

the input given the output.  The output is a relationship between the mutual 

information and Minimum mean square error that holds regardless of the input 

distribution, as long as the input-output pair are related through additive 

Gaussian noise.  For example the simplest scalar real-valued Gaussian channel 

with an arbitrary fixed input distribution.  Let the signal-to-noise ratio (SNR) of 

the channel be denoted by snr.  Both the input-output mutual information and the 

Minimum Mean square error are monotone functions of the SNR, denoted by I 

(snr) and mmse (snr), respectively.  This paper finds that the mutual information 

in nats and the Minimum Mean square error satisfy the following relationship 

regardless of the input statistics:  

  
1

( ) ( )
2

d
I snr mmse snr

dsnr
               (1) 

  Simple as it is, the identity (I) was unknown before this work.  It is 

trivial that one can compute the value of one monotone function given the value 

of another (e.g., by simply composing the inverse of the latter function with the 

former); what is quite surprising here is that the overall transformation (1) not 

only is strickingly simple but is also independent of the input distribution.  In 

fact, this relationship and its variations hold under arbitrary input signaling and 

the broadest settings of Gaussian channel, including discrete-time and 

continuous-time channels, either in scalar or vector versions.   

In a wider context, the mutual information and mean-square error are at 

the core of information theory and estimation theory, respectively.  The input -

output mutual information is an indicator of how much coded information can be 

pumped through a channel reliably given a certain input signaling, whereas the 

MMSE measures how accurately each individual input sample can be recovered 

using the channel output.  Interestingly, (1) shows the strong relevance of mutual 

information to estimation and filtering and provides a noncoding operational 

characterization for mutual information.  Thus, not only is the significane of an 

identity like (1) self-evident, but the relationship is intriguing and deserves 

through exposition.
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5. Decoding of Reed Solomon Codes 

 

It is shown that if an RS code is encoded by means of the Chinese remainder 

theorem, then decoding can be accomplished in a different manner from the usual 

decoding procedure for the cyclic RS codes Berlekamp (1968). This decoding method 

uses the Berlekamp algorithm, yet the roots of the error locator polynomial need not be 

found as in the Chien search nor the values of the errors determined.  Instead, in this 

method, the calculation of the syndrome is more complicated, and a polynomial division 

must be accomplished. For low-rate codes, which correct a large number of errors, the 

total number of Galois field calculations may be less.  It is also shown how this method is 

applicable to RS codes with less information symbols than the full length code. 

  RS codes constructed by means of the Chinese remainder theorem have 

the interesting property that each symbol in the encoded word is determined solely by the 

information symbols. Symbols can be discarded from an encoded word, reducing the 

distance of the word. If the distance of the full length codeword is 2t + 1, up to 2t 

symbols can be discarded. Each discarded symbol lowers the distance by one.  This 

property may be useful in certain circumstances. For instance, Mandelbaum (1971) 

proposes a generalization to Tong’ s burst-trapping technique (1969), which makes use of 

codewords with discardable redundancy. The resulting system can be used with more 

general channels.  

  It is also shown that how RS codes encoded by the Chinese remainder 

theorem in a different manner Mandelbaum (1968) can be decoded by finding the 

syndromes, solving a system of 2t linear equations, and executing a polynomial division.  

These codes have less information symbols than the full length RS code. 

6. Decoding of Reed–Solomon with Alternant Codes 

 

 Here the main focus is on linear codes so that the set of codewords form a 

linear subspace of 
N

. Reed–Solomon codes are a classical, and commonly used, 

construction of linear error-correcting codes that yield [N = n, K = k + 1.  D = n 

– k]q codes for any k < n  q.  The alphabet for such a code is a finite field F.  

The message specifies a polynomial of degree at most k over  F in some formal 

variable x (by giving its coefficients).  The mapping C maps this code to its 

evaluation at distinct values of x chosen from F (hence it needs q =  F n). The 

distance property follows immediately from the fact that two degree k 

polynomials can agree in at most places.  

  The decoding problem for an [N, K, D]q code is the problem of 

finding a codeword in 
N

 that is within a distance of e from a “received” word 

R
N

.  In particular, it is interesting to study the error rate /
def

e e N  that can 
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be corrected as a function of the information rate /
def

k K N . For a family of 

Reed–Solomon codes of constant message rate and constant error rate, the two 

brute-force approaches to the decoding problem (compare with all codewords , or 

look at all words in the vicinity of the received word) take time exponential in . 

It is, therefore, a nontrivial task to solve the decoding problem in polynomial 

time in . Surprisingly, a classical algorithm due to Peterson (1960) manages to 

solve this problem in polynomial time, as long as 
1

2

N K
e

 
  (i.e. achieves e = 

( 1 – k) /2). Faster algorithms, with running time O(N
2
) or better, are also well 

known: in particular, the classical algorithms of Berlekamp and Massey (1968) 

achieve such running time bounds. It  is also easily seen that if 
1

2

N K
c

 
 then 

there may exist several different codewords within distance of a received word, 

and so the decoding algorithm cannot possibly always recover the “correct” 

message if it outputs only one solution. 

 

7. Power Inequality in Gaussian Channels 

 

 The differential entropy of the probability density function f(x) given by  

  ( ) ( ) ( ) log ( )h X f x u fx u du                                  (1) 

  The variance of a Gaussian random variable with the same 

differential entropy is maximum and equal to the variance when the random 

variable is Gaussian, and thus, the essence of is that the sum of independent 

random variables tends to be “more Gaussian” than or both of the individual 

components.  In theory of communication (1948) Claude Shannon put forth the 

inequality  

  exp(2 ( ..... )) exp(2 ( ))
1

1

n
h X X h X

n i
i

   


                              (2) 

for n independent random variables.   

  The first proof of (1) was given by Stam (1959), based on an 

identity commumicated to him by N.G De Bruijn, which couples Fisher’s 

information with Shannon’s differential entropy.   

  Capitalizing on the relationship between mutual information and 

minimum mean-square error (MMSE) for additive Gaussian channels, this note 

gives a simpler proof of the entropy-power inequality (EPI) based on an 

elementary estimation-theoretic reasoning which sidesteps invoking Fisher’s 

information.  In a follow-up to this work, we use the MMSE to give simple 
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proofs of two variations of the EPI, namely, Costa’s strengthened EPI in which 

one of the variables is Gaussian Costa (1985), and a generalized EPI for linear 

transforms of a random vector due to Zamir and Feder (1993).   

  Following a simple “noise-incemental” argument, Guo & Shamai 

(2005) shows that regardless of the distribution of X we can write  

  
1

( : ) ( , )
2

d
I X X N mmse X

d
 


                       (3) 

  Where N ~ N (0, 1) is standard Gaussian independent of X, and the 

MMSE of estimating X in unit-variance additive Gaussian noise is  

   2}){XE-(X),( NXXmmse   

  Here  is understood as the (gain of the ) signal-to-noise ratio of 

the Gaussian channel whose input is X.   

  A direct consequence of (3) is the represen-tation  of the 

differential entropy of a random variable with variance 2

x as  

 

2
1 12( ) log(2 ) ( , )0 22 2 1

Xh X e mmse X d
x

X


   



  


                    (4) 

  Thus, the nongaussianness of X (divergence of f(x) with respect to 

the Gaussian density with identical first and second moments) is given by one 

half of the integral of the difference of MMSEs achievable by a Gaussian input 

with variance 2

x  and by X, respectively.   

For a unit variance X, (4) reduces to  

  
1 1 1

( ) log(2 ) ( , )
2 2 1

0

h X e mmse X d  



  


                    (5) 

  It is amusing (and useful) to note that (5) holds even if X does not 

have unit variance: simply observe that  

  

2
12log 0 2 11

X d
x

X


 



 


             (6) 

  Note that whenever mmse (X, ) = 0 (1/) (as in the case of a 

discrete random variable, where it vanishes exponentially), (4) indicates that h 

(X) = - .   

  Since (5) expresses the differential entropy of an arbitrary random 

variable in terms of the MMSE of its estimation when observed in Gaussian 

noise, (1) can be seen as a relationship between the MMSEs (integrated over 

signal-to-noise ratios) of the sum and of the individual random variables.  
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8. Conclusion 

 

 In this general study, we can see that how the errors in Gaussian Channels centered 

around the mutual information between the input and the output of a channel, 

and the minimum mean-square error in estimating the input given the output. 

Also, we see that how the encoding and decoding of RS codes by different 

manners will take place. R.S. Codes are natural codes to use when a code is 

required of length less than the size of the field and also, the R.S. codes are the 

convenient codes for building other codes. 
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