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1. INTRODUCTION

Graph Theory is developing rapidly with its applications to other branches of

Mathematics, Social Sciences, Physical Sciences and Technology. In which the theory of
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domination introduced by Berge [2] and Ore [6] is a rapidly growing area of research.
Several graph theorists, Allan and Laskar [1], Cockayne and Hedetniemi [3],
SampathKumar [7] and others have contributed significantly to the theory of domination.

Recently dominating functions in domination theory have received much attention.
Hedetniemiet.al. [5] introduced the concept of dominating functions. The concept of total
dominating functions was introduced by Cockayne et.al. [4]. The concept of total
unidominating function was introduced by the authors in [8]. Minimal total unidominating

functions and upper total unidomination number were introduced in [9].

In this paper the minima total unidominating functions of a path are studied and the upper

total unidomination number of a path is found and the results obtained are illustrated.
2. UPPER TOTAL UNIDOMINATION NUMBER OF A PATH

In this section the upper total unidomination number of a path is discussed.First the
concepts of minimal total unidominating functions and upper total unidomination number
are defined as follows.

Definition 2.1: Let G(V, E) be a connected graph. A function f: V — {0,1} is said to be a
total unidominating function, if

Z fwuy=z1vveVand f(v) =1,
u€eN (v)

Z fw)y=1VvVveV and f(v) =0,
u€eN (v)

where N (v) is the open neighbourhood of the vertex v.

Definition 2.2: Let G(V,E) be a connected graph. A total unidominating function
f:V - {0,1} iscalled a minimal total unidominating function if forall g < f, g is not

a total unidominating function.

Definition 2.3: The upper total unidomination number of a connected graph G (V,E)

is defined as max {f(V)/f is a minimal total unidominating function}. It is denoted
by T, (G).

Theorem 2.1: The upper total unidomination number of a path B, is

2 ifn=2,
Iy, (B) =115n
7
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Proof: Let B, be a path with vertex set V = {vy,v,, ..., v, }.

To find upper total unidomination number of P,, the following seven cases arise.
Casel: Let n = 0(mod 7).

Define a function f:V — {0,1} by

_ {1 fori=234,56(mod7),
fw) = 0 for i = 0,1(mod 7).

Now we prove that f is a minimal total unidominating function.

Subcase 1: Let i =0(mod7) andi # n. Then f(v;) =0.

Now D' f(u)=f(wi)+f(vin)=1+0=1

u€eN (v;)

Fori = n we have Z fw =f,.1) =1

u€eN (vy,)

Subcase 2: Let i =1(mod7) andi # 1. Then f(v;) = 0.

Now > f()=f(v1)+f(i) =0+1=1
u€eN (v;)

For i =1 we have Z fw) =fw,) =1
U€eN (vq)

Subcase 3: Let i= 2(mod 7). Then f(v;) = 1.

Now D fu)=f(vi)+f(w) =0+1=1
u€eN (v;)

Subcase 4: Let i = 3,4,5(mod 7). Then f(v;) = 1.

Now > f()=f(u 1)+ f(u)=1+1=2>1
u€eN (vy)

Subcase 5: Let i = 6(mod 7). Then f(v;) = 1.

Now > f(u)=f(vi) +f(w) =1+0=1

u€eN(vy)
Hence from all the above subcases it follows that £ is a total unidominating function.

Now we check for the minimality of f.
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Define a function g:V — {0,1} by
gw) =fw)forallv, eV,i+k, k=2(mod7)and g(v,) = 0.
Then by the definition of f and g it is obvious that g < f.

Since k = 2(mod 7), k — 1 = 1(mod 7). Then g(vi_1) = f(v,_1) = 0.

But z g = gWey) +g(w) = 040 =0 % 1.

UEN (V—1)
Therefore g is not a total unidominating function.

Similarly whenk = 3,4,5,6(mod 7), then also we can show that g is not a total

unidominating function.

Hence for all possibilities of defining a function g < f, we can see that g is not a total

unidominating function.

Therefore f is a minimal total unidominating function.

Nowa(u)—Zf(v)— O+141+1+1+1+0+..

uevy

+0+14+14+1+14+1+4+0 ==

Therefore T'y, (B,) = 57" -——=()

Let f be a minimal total unidominating function of B,. Then amongst seven consecutive
vertices in P, atmost five consecutive vertices can have functional value 1 and atleast two

vertices must have functional value O.

Therefore sum of the functional values of seven consecutive vertices is less than or

equal to 5.

7 14
That is Zf(vi) < S,Zf(vi) <s,. Z fw) <5.
i=1 i=8

i=n—6

Thereforer(u) Zf(v)+2f(v)+ +Zf(v)<5+5+ -+5 <5—

uev i=n—6 —tzmes
. . . . 5
Since f is arbitrary, it follows that I';,, (B,) < 7” -——(2)
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Thus from the inequalities (1) and (2), we have I'y, (P,) = 57n

Case 2: Letn = 1(mod 7).
Define a function f:V - {0,1} by

1 for i=234,56(mod7),i+n—-3,i+#n—2,
fw) = . . 4
0 for i=0,1(mod 7),i #n—1,i #n.

and f(vp—3) = 0,f(Vh—2) =0,f (V1) = Lf (1) = 1.

Then this function is defined similarly as the function f defined in Case 1 and so for the
vertices vy, v, ..., V,,_4 the function f is a total unidominating function. We can check
easily the condition of total unidominating function for the remaining vertices
Vp—3, Un—2,Vn—1, U, and hencef becomes a total unidominating function.

Now we check for the minimality of f.
Define a function g: V — {0,1} by
gw)y=fw) Vuev, u+uy,
and g(v,) = 0.
Then by the definition of f and g, it is obvious that g < f.

Now g(vn—l) = f(vn—l) = 1. But

> g = g 2) +gm) = 0+0=0%1.

u€N (v -1)
Therefore g is not a total unidominating function.

For all possibilities of defining a function g < f, we can see that g is not a total

unidominating function.

Therefore f is a minimal total unidominating function.

Now Zf(u)z O+1+41+41414140++0+1+1+1+0+0+1+1

uevy

—5<n_8)+3+2—
=5(% -

Sn_S_lan
7 17]

5n
Therefore T, (B,) = l7J -——()

Let f be a minimal total unidominating function.

48 International Journal of Engineering, Science and Mathematics
http://www.ijesm.co.in, Email: ijesmj@gmail.com




ISSN: 2320-0294 L Impact Factor: 6.765

Suppose n = 8. Then the possible assignment of functional values to these eight vertices
is1,1,0,0,1,1,1,0 or 0,1,1,1,0,0,1,1, so that f(V) =5 and

rec=s= 5] 14)

Let n > 15.

_ | S 5(n — 1)
As in Case 1 of this Theorem we have Z f(v) < —
i=2

Now we assign the functional value to v, as follows.

Suppose f(v;) = 0.

. 5tn—1) 5n—5 |5
Then (V) = f(v) + ) fw) <0+ ("7 2 = 7“]
i=2
Suppose f(v;) = 1.

-1 . . .
In such case among the "7 sets of seven consecutive vertices, there will be one set of

seven consecutive vertices whose functional values sum is 4.0Otherwise the assignment
makes f no more a minimal total unidominating function. Without loss of generality

assume that the last set of seven consecutive vertices has functional values sum 4.

5(n—8) 5n—5 |5n
+4= =[—J.
7 7 7

Then f(V) = f(v1)+Zf(V)+ Z f) <1+222

i=n—6

Since f is arbitrary it follows that T, (B,) < [57"J -——(2)

Thus from the inequalities (1) and (2), we have I, (B,) = lST"J

Case 3: Let n = 2(mod 7).

Subcase1l: Letn=2.

Then there is only one total unidominating function f defined by
fw) =1f(w) =1

Thus total unidomination number of P, is 2.

Subcase2: Let n>09.

Define a function f:V — {0,1} by
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Flo,) = {1 for i =2,3,4,56(mod 7),i #n— 3,
Vi) =0 for i = 0,1(mod 7), i#+n-—1,

and f(v,3) =0, f(v,_1) =1

On similar lines to Case 1 we can verify that f is a total unidominating function.
Now we check for the minimality of f.

Define a function g:V — {0,1} by

gw)=fw)vueV,u+v,_;and g(v,_1) =0.

Then by the definitions of f and g it is obvious that g < f and for g(v,_,) = 0,we have

g(u) = g(vn—3) +g(vn—1) =0+0=0=+#1.

U€EN (v —2)
Therefore g is not a total unidominating function.

Thus for all possibilities of defining a function g < f, we can see that g is not a total

unidominating function.

Therefore f is a minimal total unidominating function.

Nowa(u)z 04+1+1+1+1+1+0++0+1+1+1+1+0+0+1+1

uevy
_5<n_9)+6_5n_3_l5n
B 7 7 17

5n
Therefore T',,(P,) = l7J -———

Let f be a minimal total unidominating function.

Suppose n = 9. Then the possible assignment of functional values to these nine vertices is
1,1,0,01,1,110 or 0,1,1,1,1,0,0,1,1,sothat f(V) = 6 and

== (2= (%)

Let n > 16.
n
: : 5(n —2)
As in Case 1 of this Theorem we have z fv) < —
i=3
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Since f is a minimal total unidominating function, the assignment of functional values to

vy, vyisas follows.

Suppose f(v;) =0,f(v2) =1.

5(n—2)_5n—3:l5nJ

Then f(V) = f(v;) + f(v,) + Zf(vl-) S0+1+ T2 =2 =
i=3

Suppose f(v1) =1,f(v;) =1.

Then as in Case 2 we have

Zf(v)—z:f(vH S <32,

i=n—6

Therefore f(V) = f(v,) + f(v;) + Z Fw) + z Fw)

i=n—6

5(n—9)+ 5n—3 lan

<1+1+
7

Since f is arbitrary, it follows that T, (B,) < [57"J -———(2)

Thus from the inequalities (1) and (2), we havel'y, (B,) = lS7nJ

Case 4: Let n = 3(mod 7).
Define a function f:V - {0,1} by

(1 fori=234,56(mod?7),
fl) = {0 for i =0,1(mod 7) -

On similar linesto Case 1 we can verifythat f is a minimal total unidominating function.

Nowa(u)=0+1+1+1+1+1+0+---+0+1+1+1+1+1+0+

uevy

0+1+1—5<n_3>+2—5n_1 lan
—_— 7 7 71

5n
Therefore I'y, (P,) = l7J -———()

Let f be a minimal total unidominating function.
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Suppose n = 3. Then the possible assignment of functional values to these three vertices
is1,1,0 or 0,1,1s0 that (V) = 2 and T,,(Ps) =2 = [57”J - [?J
Letn > 10.

Nown = 3(mod 7) = n — 3 = 0(mod 7).

n—3

5(n—3)

So by Case 1 we havez flv) < —
i=1

n
Then for the vertices v,,_,,v,_1, v, we have Z f(v;) =2.

i=n-—-2

5(n—3 5n—-1
M+2< n

n—-3 n
There fore f(V) = z Flu) = Z Fo) + Z fw) <
i=1 2

7 -7
uev i=n-—
lSn
<|=
7
Since f is arbitrary, it follows that T',,, (B,) < [57"J -——(2)

Therefore from the inequalities (1) and (2), we have T, (B,) = l57" .

Case5: Let n = 4(mod 7).
Define a function f: V — {0,1} by

F(v,) = {1 fori=23456(mod?7),i+#n,
Yo for i =0,1(mod 7) -

and f(v,) = 0.

On similar lines to Case 1 we can show that f is aminimal total unidominating function.

Now 2f(u)= 0+1+1+1+1+1+0+--4+0+1+1+1+1+1+0+

u€ev
5(n—4) 5n
0+1+1+0=—+2=[—J.
5n
Therefore I'y, (P,) = l7J -———()
Let f be a minimal total unidominating function.
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Suppose n = 4. Then the possible assignment of functional values to these four vertices is

0,1,1,0, sothat (V) =2 and T,,(P) =2 = [57”J - [?]
Let n > 11.

5(n—4)

As in Case 1 of this Theorem we have Z f(v) < 7

i=2
n

Similar to Case 3 for the vertices v,,_,, v,_1, v, we have z f(v,) = 2.

i=n—-2
Now the functional value to v, is assigned as follows.
Suppose f(vy) = 0.
5(n—4) _5n—6 |5n
Then f(V) = f(v1)+Zf(v)+ sz(v)<0+ 2= _[7J.
Suppose f(v;) = 1.
Then as in Case 2 we have
n—-10
V) = f) + Z fw)+ Z fw) + 2 fw)
5(n—11) 5n — 5n
<1+ 42 [ |
7
Since f is arbitrary, it follows that T';,(B,) < [57nJ -——(2)

From the inequalities (1) and (2), we have T'y, (B,) = 15771]
Case 6: Letn = 5(mod 7).

Define a function f:V - {0,1} by

Flv) = {1 fori=23456(mod?7),i#n,
Vi) =0 for i =0,1(mod 7) -

and f(v,) =0.

Then on similar lines to Case 1 we can show that f is a minimal total unidominating

function.
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Now Zf(u)=0+1+1+1+1+1+O+---+0+1+1+1+1+1+0+
u€ev
n—>5

O+1+1+1+O:5(T)+3=

5n—4_ lSn
7 7]

5
Therefore T'y, (B,) = l7nJ -——)

Let £ be a minimal total unidominating function.
Suppose n = 5.

Then thefunctional values to these five vertices can be assigned as 0,1,1,1,0, so that

FOV) =3and Ty(Ps) =3 = [57”J - [? .

Let n > 12.

5(n—-75)

n-3
As in Case 1 of this theorem we have z f(v) < 7

i=3

n
As in Case 3 for the vertices v,_,,v,,_1, v, we have Z f(v;) =2.
i=n-2
Since f is a minimal total unidominating function, the assignment of functional values to

vy, U,is as follows.

Suppose  f(v1) =0,f(vy) =1.

n—3 n
Then f(V) = f(vy) + f(v,) + Ef(”i) + z fw)
i=3 i=n—-2

<0+1+

5(n—5)+2_5n—4_l5n
7 -7 L7l

Suppose f(v1) =1,f(v;) =1.

Then as in Case 2 we have

< N < 5(n — 12)
n —
Ywr= Y fw+ Yy fw) s
i=3 i=3 i=n—9
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n—-10
Therefore (V) = f(vy) + f(v,) + Z fw) + 2 fw) + Z Fw)
i=n-9 i=n-2
5(n—12) 5(n—12) 5n—4 |5n
S1+1+f+4+2=f+8= = =l7J
Since f is arbitrary, it follows that T'y,, (B,) < [—J -——(2)

Thus from the inequalities (1) and (2), we have I',, (BP,) = [57nJ

Case 7: Let n = 6(mod 7).
Define a functionf:V — {0,1} by

fo) = {1 fori=23456(mod?7),i#n,
Vi) =0 for i =0,1(mod 7) -

and f(v,) =0.

On similar lines to Case 1 we can verify that f is a minimal total unidominating function.

Now ) () =0+ 1+ 1+ 1414140+ +0+1+1+1+1+1+0+

uevy

n—=6 5n—2 5n
0+1+1+1+1+0=5<T>+4 = 7 = l7J

5n
Therefore T'y, (B,) = lTJ -——()

Let f be a minimal total unidominating function.

Suppose n = 6. Then the possibilities of assigning functional values to these six vertices
are0,1,1,1,1,0 or 1,1,0,0,1,1, sothat f(V) =4 and

rue=4= [2= [
Let n > 13.

If £ is any minimal total unidominating function, then the functional values of first three

vertices and the last three vertices must satisfy the following conditions.

if(vi) =2 and zn: fv,) = 2.
i=1 i=n-2
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Now n = 6(mod 7) = n — 6 = 0(mod 7). Then as per the discussion in Case 1,

n—3
we havez fv) < w
i=4

3

Therefore f(V) = Z fw) = Zf(vi) + rff(vi) + i f)
i= i=n-2

uev i=1

_|_5(n—6)_|_2 5n—2_l5n
= 7 7 L7l

Since f is arbitrary, it follows that 'y, (B,) < [STnJ -——=(2)

Therefore from the inequalities (1) and (2), we have T'y, (P,) = 57"J

Thus for all possibilities of n,n # 2 we have I',,, (B,) = ls7nJ and

forn=2,T,,(P)=2.m
3. ILLUSTRATIONS
Example 3.1: Let n = 42.
We know that 42= 0(mod 7).
The functional values of a minimal total unidominating function f defined as in

Case 1 of Theorem 2.1 for P,, are given at the corresponding vertices.

¢ 1111 1!®®11 1 1 1! #1111 1 @ o111 1 1 1 @& o1 111 1 @« ol 11 110

Upper total unidomination number :[S’C#J =30.m

Example 3.2: Letn = 29.
We know that 29 = 1(mod 7).
The functional values of a minimal total unidominating function f defined as in

Case 2 of Theorem 2.1 for P,q are given at the corresponding vertices.

£ 11 1 1 1 ®© @& 1 1 1 1! 1 & ®© ! 1 11 )} @& @ 1 '} } @« @ 1 1
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5x29
7

Upper total unidomination number ofPg is [ J = 20.
Example 3.3: .Letn = 30.
We know that 30= 2(mod 7).

The functional values of a minimal total unidominating function f defined as in

Case 3 of Theorem 2.1 for Pz, are given at the corresponding vertices.

f & 1111111 o1 1 1! 1 1 o @& 1 1! ! 1 1 @& @& 1} 1 11 1 @ o 1 1

5x 30
7

Upper total unidomination number of P3Ois[ J = 21.
Example 3.4: Letn = 24.
We know that 24 = 3(mod 7).

The functional values of a minimal total unidominating function f defined as in

Case 4 of Theorem 2.1 for P,, are given at the corresponding vertices.

Upper total unidomination number of P,, is 15X724J = [%J =17.

Example 3.5: Let n = 25.
We know that 25= 4(mod 7).
The functional values of a minimal total unidominating function f defined as in

Case 5 of Theorem 2.1 for P,5 are given at the corresponding vertices.

5x 25
7

Upper total unidomination number is l J =17.
Example 3.6: Letn = 33.
We know that 33 = 5(mod 7).

The functional values of a minimal total unidominating function f defined as in
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Case 6 of Theorem 2.1 for P33 are given at the corresponding vertices.
R R R R R R e R

f 1 1 1 1 1 & @ 11 1 1 1 & @ 1 1 1 1 1 oo 1 1 1 1 1@ e 1 &1 1 @&

Upper total unidomination number is [5 x733J = [g] =23.

Example 3.7: Let n = 27.
We know that 27 = 6(mod 7).
The functional values of a minimal total unidominating function f defined as in

Case 7 of Theorem 2.1 for P,, are given at the corresponding vertices.

Upper total unidomination number is le%J = 19.
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