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ABSTRACT: Optimization has become an imperative tool in treatment 

scheduling for cancer radiation therapy.  It may be used to determine beam 

weights, beam directions, and appropriate use of beam modifiers such as 

wedges and blocks, with the aim of delivering a required dose to the tumor 

while sparing critical structures and normal tissue in close proximity. Linear 

programming formulations are a core computation in many approaches to 

treatment planning, because of the abundance of highly developed linear 

programming software.  Furthermore the choice of formulation, algorithm, and 

pivot rule that perform paramount computations are sometimes not obvious, 

and the software’s default choices are sometimes pitiable.  Here a number of 

linear programming formulations of treatment planning problem with dose 

volume constraints, conclusions are drawn about the formulations and variants. 
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1. INTRODUCTION: 

  

Radiation therapy is a widely used technique for treatment many types of cancer. It works 

by depositing radiation into the body of the patient, so that prescribed amounts of radiation 

are delivered to the cancerous regions (tumors), while nearby non-cancerous tissues are 

spared to the extent possible. Radiation interferes with DNA of cells, impeding their ability 

to reproduce. It tends to affect fast-multiplying cells (such as found in tumors) 

preferentially, making them more likely to be eliminated. 
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In this paper we consider external beam radiotherapy, in which the radiation is delivered 

via beams fired into the patient’s body from an external source. The linear accelerator that 

produces the beams is located in a gantry which can be moved around the patient, allowing 

the beams to be delivered from a number of different angles. Additionally, a collimator can 

be placed in front of the beam to change its shape, and wedges can be used to vary the 

intensity of the beam across the filed. In the “Step-and-Shoot” mode of treatment, the beam 

is aimed from a number of different angles (typically between 4 and 20), a wedge 

orientation and collimator shape is chosen for each angle, and the radiation beam is 

exposed for a certain amount of time (known as the beam weight). Two major variants of 

this approach includes conformal therapy in which the shape of the collimator at each 

angle is chosen to match the shape of the tumor as viewed from that angle, and intensity-

modulated radiation therapy (IMRT) in which the beam field is divided for planning 

purposes into a rectangular array of “beamlets”, which are then assigned individual 

weights. 

 

For purposes of modeling and planning, that part of the patient’s body to which radiation is 

applied is divided using a regular grid with orthogonal principal axes. The space is 

therefore partitioned into small rectangular volumes called “voxels”. The treatment 

planning process starts by calculating the amount of radiation deposited by a unit weight 

from each beam into each voxel. These doses are assembled into a dose matrix. (Each 

entry ijA  in this matrix is the dose delivered to voxel i by a unit weight of beam j). Once 

the dose matrix is known, inverse treatment planning is applied to find a plan that 

optimizes a specified treatment objective while meeting certain constraints. The treatment 

plan consists of a specification of weights for all beams. 

 

Linear programming is at the core of many approaches to treatment planning. It is a natural 

way to model the problem, because the amount of radiation deposited by a particular beam 

in each voxel of the treatment space is directly proportional to the beam weight, and 

because the restrictions placed on doses to different parts of the treatment space often take 

the form of bounds on the doses to the voxels. 

 

We report in this paper on a computational study of linear programming formulations of 

the treatment planning problem, for data sets arising from both conformal radiotherapy and 
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IMRT. We aim to give some insight into the performance of the solvers on these various 

formulations, and as to which types of constraints cause significant increases in the 

runtime. We also give some general recommendations as to the best algorithms, pivot 

rules, and reduction techniques for each formulation. 

  

The remainder of the paper is described as follows. Section 2 contains a linear 

programming model of treatment panning problem with dose volume constraints that we 

tested. The data sets used in the model are described in section 3; they include both data 

that is of conformal therapy and data that arises in IMRT planning. We interpret and 

discuss the computational results in section 4.  Section 5 contains main conclusions. 

 

2. A MODEL WITH DV (DOSE VOLUME) CONSTRAINTS 

We now consider a linear programming formulation that arises when DV constrains are 

present. As mentioned earlier, such constraints typically have the form that “no more than 

a fraction f of the voxels in a critical region receives a dose higher than a specified 

threshold ”. This type of constraint was apparently first suggested by Langer and Leong 

in [2]. An exact formulation can be obtained by means of binary variables as follows. First 

we denote the critical region by C (with  voxels) and dose matrix for this region by
cA .  

Introducing the binary vector c  (with cn  components, each of which must be either 0 or 

1), we formulate the constraint as  

wAx cc  ,                                                 (2a) 

ccc Mex   ,                        (2b)                                 

cc

T

c fne  ,                                               (2c) 

                                          cn

c 1,0 ,                                                              (2d) 

 

Where cx the dose vector for the critical region, M is a large constant and ce  is the vector 

of all 1’s and dimension . The components for which i =1 are those that are allowed 

to exceed the threshold. A typical linear programming problem arising in the course of the 

heuristic just described (and possibly others) is as follows: 

             

cn

cn
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                                                   (2.1a) 

 

             Subject to          wAx TT  ,                                                           (2.1b) 

                                     ,wAx NN                                                              (2.1c) 

                                   ,wAx CC                                                                 (2.1d) 

                               ,U

TT

L

T xxx                                                              (2.1e) 

                                   ,bxx C                                                              (2.1f) 

                                      .0, xw                                                             (2.1g) 

 

Where b is a vector of thresholds for voxels in C (different thresholds may apply for 

different voxels in C), x  represents the dose to the critical voxels in excess of the doses 

specified in b. The cost vectors c and Nc are the penalties applied to excess doses in 

the C voxels and to any non-negative dose in the N voxels.  The threshold vector b and 

weight vector c  are the quantities that are manipulated between iterations of the heuristic 

in an attempt to satisfy the given DV constraints. 

 

The vectors Nx  and x   can be eliminated from (2.1) to obtain: 

                                     




xxw

xcwAC

T

T

N

T

N

,,

min 
                               (2.2a) 

                        Subject to               ,wAx TT                                      (2.2b) 

                                                       ,U

TT

L

T xxx                                   (2.2c) 

                                                      ,bwAx C                                   (2.2d) 

                                                           ., oxw                                    (2.2e) 

Which we refer to as the reduced primal form.The dual of (2.2) can be written as follows: 

The standard primal form is  

         min     xcwAC T

N

T

N      =     max      xcwAC T

N

T

N   

                Subject to            ,L

TT xwA   

                                               ,U

TT xwA   

                                               ,bxwAC    
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                                                  .0, xw  

Let the dual variables be   L  , U  and  E  

The dual of the above problem is 

  min   E

T

U

TU

TL

TL

T bxx   )()(     =    max    ( E

T

U

TU

TL

TL

T bxx   )()(        (2.3a) 

          Subject to            N

T

NC

T

CU

T

TL

T

T CAAAA    

                                                            EE c  

                                  0)(  N

T

NC

T

CLU

T

T CAAA   

                                                       0  cE  

                                  0 LU    

                                          0C  

                                          0NC     

                                         0,0   cE  

Introducing surplus variables  ,,,,,, ECTNUL   

                                       0 TLU                                          (2.3b) 

                                                       NN C                                        (2.3c)       

                                                  0 EC                                         (2.3d) 

                                                          EE C                                        (2.3e) 

                                       0 N

T

NC

T

CT

T

T AAA                                        (2.3f) 

                                                  .0,, EUL                                    (2.3g) 

By eliminating    C  , N  , T  we obtain 

                        max    E

T

U

U

TL

L

T bxx                                                      (2.4a) 

                   Subject to         ,0  cE                                               (2.4b) 

                               ,)( N

T

NE

T

CUL

T

T CAAA                                          (2.4c) 

                                                L   , U    o                                      (2.4d) 

                                                             

Which we refer to as the reduced dual form. difference in runtime for the best choices of 

algorithm and pivot rule. 
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3.1 Data Sets. In this section we briefly describe the data sets used with the models of 

Section 2. For both conformal therapy data (with relatively few beams), and the IMRT case 

(which has many beams and a sparser dose matrix) we used only a real data set.  

 

Conformal Therapy (Pancreatic Data Set): Our first data set was from a patient with 

pancreatic cancer (the same set used in Lim et al. [4]), which contained several critical 

structures (liver, spinal cord, and left and right kidney). Distribution of voxels between the 

target, critical regions, and normal regions is shown in Tab1.  

 Table-1 

Pancreatic Data Set: Voxels per region 

Region- Tissue # of voxels 

Target 1244 

Normal 747667 

Critical-Spinal Cord 514 

Critical-liver 53244 

Critical-Left Kidney 9406 

Critical-Right kidney 6158 

Total 818181 

 

We used 36 beams in the model, where each beam is aimed from a different angle around 

the patient (angles separated by 10
0
). The beam from each angle is shaped to match the 

profile of the tumor, as viewed from that angle. The full dose matrix has only 36 columns 

(one for each beam) but more than 800000 rows (one for each voxel). We set the entry in 

the dose matrix to zero if its dose was less than 10
−5

 of the maximum dose in the matrix. 

The dose matrix has many zeros but is still quite dense, since each of the 36 beams delivers 

dose to a large fraction of the voxels in the treatment region.  

Table-2 

IMRT Data Set: Voxels per Region 

Region- Subclass # of voxels 

Target-Target  884 

Target-Regional 4246 

Critical-Spinal Cord 406 

Critical-Parotids 692 

Normal 17772 

Total 24000 
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IMRT Data Set (Nasopharyngeal): In intensity modulated radiation therapy (IMRT), 

each beam is split into pencil beams or beamlets, usually by dividing its rectangular 

aperture by a rectangular mesh. A typical data set has 25-200 beamlets from each of 7-72 

possible angles, where each beamlet has its own dose distribution. The solution of the 

model we describe in Section 2 yield a weight for each beamlet. Our data set for IMRT is a 

case of a Nasopharyngeal tumor, also used by Wu[5]. There are 51 beam angles, with 39 

beamlets from each angle, giving a total of 1989 beamlets (that is, 1989 columns in the 

dose matrix). The 24000 voxels are divided into five regions, as shown in Table2. The 

target region is subdivided into a “target” region containing the actual tumor and a 

“regional” part, corresponding to voxels near the tumor that we wish to control in the same 

way as tumor voxels (by specifying target values on their doses, for instance). The critical 

region is subdivided into the spinal cord and the parotids. In summary, the dose matrix A 

has 24000 rows and 1989 columns. 

 

4. COMPUTATIONAL RESULTS: We now give details of the computational results 

with the formulations of Section 2 on the data sets of Section 3. Our analysis of these 

results indicates that the most obvious formulations and the default algorithmic parameter 

selections often do not yield the best execution times. For this  model we discuss separately 

the results for conformal radiotherapy and IMRT.  In this formulation, we set the normal 

voxel penalty vector cN  to e = (1, 1, . . . , 1)
T
 . For the pancreatic data set, we used 

L

Tx = 

0.95e and 
U

Tx = 1.07e as bounds on the target voxel dose, and 
L

Tx = 50e and 
U

Tx = 75e for 

the IMRT data set. 

 

4.1. Model Results: The parameter specific to model is the upper bound vector U

Nx on the 

normal voxel dose. To choose an appropriate value for this bound, we first solved the 

problem without these bounds. For the pancreatic data set, the highest doses to a voxel in 

each critical region (measured in relative units) were: .461 (spinal cord), .915 (liver), .111 

(left kidney) and .612 (right kidney) (see Table 2 for a summary of the voxel distribution 

for this data set). For the IMRT data set, we set the bounds as follows: 75 Gy (target and 

normal tissue), 50 Gy (parotids), and 10 Gy (spinal cord). 
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Table-3 

Problem Sizes and Effects of Preprocessing. 

Data Formulation Before presolve After presolve Average 

presolve 

 time (Sec) 

Rows Columns Rows Columns 

Conf. Full Primal 801815 801851 222690 222726 13.4 

Conf. Full Dual 801851 1025785 222726 446660 13.8 

Conf. Red.Primal 239058 1281 72496 1280 1.9 

Conf. Red Dual 37 819426 36 73740 4.1 

IMRT Full Primal 23999 25604 16260 17435 3.2 

IMRT Full Dual 25174 48820 17435 37651 3.8 

IMRT Red.Primal 16263 6736 16224 6305 2.7 

IMRT Red Dual 1606 29131 1175 21354 4.0 

 

5. CONCLUSION: 

We have performed a computational study of the linear programming approach to 

the radiation treatment planning problem with dose volume constraints. Our conclusions 

are that the choice of formulation, algorithm, and pivot rule can be crucial to the efficiency 

of the solution procedure, and that the default choices are sometimes not acceptable. 
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