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  ABSTRACT  

 
 

This paper is concerned with eigen values on buckling and vibration of 

orthotropic rectangular clamped plate. The present study attempts to achieve 

closed form solutions for orthotropic clamped plates resting on elastic base, 

in a novel way based on wide panel-transition matrix technique. Strip 

technique is employed with transition matrix method to develop the 

analytical solutions in series forms. Increasing the accuracy of the transition 

matrix is the main idea to reduce the number of strips of the decomposed 

plate domain. The buckling and natural frequency parameters of clamped 

plate are investigated under the effect of the un-axial and biaxial in-plane 

forces. Analytic results of vibration natural frequencies are obtained for 

orthotropic clamped plate under in-plane forces. Also the effects of the 

aspect ratios and coefficients of elastic foundation on the behavior of 

rectangular plates are discussed. The obtained analytical results may serve as 

benchmark solutions for such plates. Numerical results are obtained and 

discussed for a wide range of orthotropic properties and foundation 

coefficients. The validity of the present method is examined by means of 

several numerical examples compared with those available in the published 

papers. The obtained results proved accuracy and validity of the achieved 

technique. 
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1. INTRODUCTION 

Compressed plates are often existed when the target of stiffness enhancing and designated strengthening is purposed. 

Kukla and Skalmiersk gave a brief historical review recently on this subject [1]. Thought an exact solution, Xiaing an 

Wang. [2] investigated buckling and vibration for plates with two opposite edges simply supported in the presence of in-

plane forces. Xiaing and Wei [3] extended this exact solution to solve buckling and vibration of stepped rectangle 

Mindlin plates. Vescovini et al [4] applied the Ritz method to analyze free vibration and buckling of anisotropic plates 

under classical boundary conditions. Lopatin and  E.V. Morozov [5] applied a non-uniform in-plane compressive force to 

check the buckling of orthotropic plate via the Kantorovich technique and Galerkin approach. An analytical approach for 

buckling of simply supported sandwich plates has been achieved by Kheirikhah et al [6] using Navier’s solution. Static, 

free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates were studied by Chien H. Thai1et al 

[7] using NURBS-based isogeometric approach. Xinwei Wang et al [8] applied differential quadrature to analyze the 

buckling of plates under cosine- compressive forces. A Reddy type, third order shear deformation theory of plates has 

been applied to the development of two versions of finite strip method (FSM), namely semi-analytical and spline 

methods, to predict the behavior of the moderately thick plates containing cutout. Fazzolari et al [9] achieved an exact 

stiffness element for free vibration study of composite plates. Mei and Yang [10] investigated the free vibrations of finite 

element plates subjected to complex middle-plane force systems. Xiang Liua et al [11] offered highly accurate analytical 

solutions for buckling and wrinkling study of orthotropic plates via Fourier series. 
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A semi-analytical method for vibration of elastically restrained thick graded plates on elastic base has been 

achieved by M. Shaban and M. M. [12]. Alipour. A. H. A. Hassan and Naci Kurgan [13] applied extended 

Kantorovich method to study buckling of skew isotropic plate on elastic foundation. Based on nonlocal 

elasticity theory, vibration study of non-uniform orthotropic Kirchhoff plates resting on elastic base was 

presented by Ma’en S. Sari and Wael G. Al-Kouz [14]. The orthotropic fluid structure coupled system has 

been studied by Hong Zhang et al [15] studied to analyze the structure sound and vibration behavior. Xiang 

Liu et al [16] offered an analytical spectral stiffness method to investigate buckling of plate resting on 

Winkler foundation. They combined the advantages of stiffness-based method and superposition method. A 

numerical technique based on finite strips and transition matrix was firstly offered by A. M. Farag [17] 

depending on Range Kutta method to solve the initial value problems of free and forced vibration of 

rectangular plates.  

Since this time, the method has been applied successfully for extended work for plate [18]-[20]. To obtain the 

desirable effects of buckling and transverse vibration of plate, the in-plane forces with the gravitational 

acceleration are considered in plates. Recently, Farag [19] expressed a semi analytical solution for buckling 

and vibration of isotropic plate subjected to in-plane force. This technique was generalized by Farag El 

Sheikh [21] to achieve the analytical solution of higher order partial differential equations applied on plates. 

Farag's idea in his original technique was to achieve the transition matrix as a result of Range Kutta fourth 

order procedure achieving the accepted accuracy through a relatively lengthy numerical technique.  

 In the present paper the plate is divided into a limited number of equal wide strips. The transition matrix is 

represented analytically in a closed form to save the labor of crossing the suggested strips. Transition matrix 

associated with strip method is applied to transmit the effect of initial conditions across strips until final 

conditions are being satisfied. The present method is a closed form technique for the eigen values of clamped 

plate under in plane forces. Buckling and free vibration of a rectangular plate subjected to normal in-plane 

forces are studied in the present paper. The investigated plate is assumed rectangular, orthotropic with full 

clamped edges denoted by the symbol CCCC .The effects of un-axial and bi-axial in-plane forces on the 

natural frequency are obtained by means of the present technique. The convergence of the accuracy for the 

obtained results is examined.  The final values are compared with those available in published literature 

showing good agreement.  

 

2. MATHEMATICAL MODEL 

Partial differential equation of motion for buckling and vibration of orthotropic plate under in-plane axial or 

biaxial forces xN  and yN , in dimensionless form is:  
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The other magnitudes K , m  , GEE yxyx ,,,,  and h  are respectively, modulus of subgrade, plate mass per 

unit area, Poisson’s ratios, Young moduli, shear modulus and plate thickness. A reasonable solution for the 

displacement ),,( tW   of a plate, with all edges clamped, may be represented by: 

   M
1 sin)]cosh(cossinh)[sin(),,( m mmmmmm ttW     (2) 

 

where )(m  is unknown longitudinal function that satisfy the plate boundary conditions of the end 

supports of plate at 1,0 and:  
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For a large number of m  one can find that  )5.0(  mm ). 

The plate is considered to be rectangular, orthotropic, with all edges clamped CCCC. Partial differential 

equation (1) can be reduced into the following ordinary differential equation: 
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)cosh(cossinhsin   mmmmmm   (6) 

 

Conveniently Eq. (4) becomes: 
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 and    Tmmmmm    ; T means transpose.  

 

The orthotropic plate is divided into a little number N  of equal orthotropic wide strips and 1N nodal lines 

NNj ,1,......,,.....2,1,0   . So, the general solution of equation (7) is expressed at thj nodal line as: 

 

    ;][ 1,  jmjlkjm T  4,3,2,1,4,3,2,1  lk  (8) 

 

where  
0m  and  

jm are the initial vector and the thj  vector of plate respectively . 

 jlkT ][ , is the thj  transition matrix where:  
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and  

1mA  , 2mB   

 

Applying equation (8) for each orthotropic strip until the final end F of plate is reached; one can obtain the 

final end vector:  

 

   
0, ][ m

N
lkFm T    (9) 

 

If the boundary conditions at 1  are satisfied, two characteristic equations for plate vibration will be 

available. The produced eigen values are the buckling natural frequencies parameters of plate.  

 

3. INITIAL CONDITIONS 

For clamped edges at 1,0 , the boundary conditions are: 

 

0'  mm          at 1,0 . (10) 

 

Then the initial vector  
0m is expressed at 0  as: 

 

   Tm 210 00   (11) 

 

where 1  and 2 are two arbitrary constants. Applying the boundary conditions for the final clamped edge 

of plate at 1 , in Eq. (10), one can get: 

 






























0

0

2

1

2221

1211

ss

ss
 (12) 

 

The coefficients 2,1,2,1;  qrsrq  match the properties of plates and the coefficient of restraint against 

rotation. The eigen values of the obtained characteristic equations in Eq. (12) are the buckling natural 

frequency parameters of plate. 

 

4. RSULTS AND DISCUSIONS 

The present technique is applied to a rectangle orthotropic clamped plate with various parameters of aspect 

ratio, orthotropic properties and in-plane forces. The closed form solutions are achieved analytically and 

expressed graphically for some cases. To verify the validity of obtained results comparisons are made with 

the available results.   
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The fundemantal buckling natural frequency parameters 
yD

m
a2   is presented in Table: 1 for 

orthotropic rectangular clamped plates CCCC with 5.1  under selected range of a parameter x  of the 

noralized in-plane forces 0,6/2  yxx NN   . The results are obtained for three cases of orthotropic 

plates and compared with available in Farag [19]. Compressions agree well showing a good accuracy of the 

present technique. 

 

 

Table: 1  Fundemantal buckling natural frequency parameters   for orthotropic rectangular clamped plates 

CCCC with 5.1  under noralized in-plan forces 0,6/2  yxx NN   

 

x  xy
yx H

DD


22
 xy

y
x H

D
D 

2
 

1 xyyx HDD  

Present Present [19] 

-100 53.90940483 51.57186408 56.93095169 56.930958 

-50 55.99307719 53.74623649 58.90784347 58.907850 

0 58.00194360 55.83599826 60.82051297 60.820519 

50 59.94352529 57.85031951 62.67483993 62.674845 

100 61.82416187 59.79682459 64.47585846 64.475864 

Buckling natural frequency parameters 
yD

m
a2   for orthotropic square clamped plates CCCC under 

normalized compressive forces are presented in Fig. 2. The results are achieved for the first two modes under 

different values of rigidities parameters 
y

xy

y

x

D

H

D

D
 21 ,    and bulking forces yx NN ,  .  

 

Table: 2  Buckling natural frequency parameters   for orthotropic square clamped plates CCCC under 

normalized compressive forces yx NN ,  according to various magnitudes of rigidity parameters  

Rigidity Parameters Buckling Forces Natural FrequencyParameters 

1  2  xN  yN  First mode Second mode 

1.00 0.25 -100 -25 46.85729028 102.3609451 

1.00 0.50 -100 -50 36.20709705 92.84404767 

1.00 0.75 -100 -75 20.35962007 82.26573605 

1.00 1.00 -100 -100 70.17437804 623.6069342 

1.00 1.00 -50 -100 10.63488466 74.39833348 

1.00 1.25 -50 -50 11.84741162 52.72171773 

1.00 1.50 -25 -25 28.82019705 67.24924924 

1.00 1.75 0 -25 34.78294395 71.46765250 

1.00 2.00 0 -50 31.29830247 65.11093725 

 

The closed form solutions are carried out for many cases of clamped plates. The implicit formulae of the 

bulking and vibration eigen values   are achieved and represented graphically for each case:  

 

Case 1: The present technique is applied to a square orthotropic clamped plate with 

yxyyx DHDD  ,25.0  under external in-plane forces 0,30  yx NN  , the implicit closed form 

solution of  is expressed by: 
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1226-1021-816-

611-47-2455-

2250-2044-1839-

16-3514-302

)6.09863(10-)4.58029(10-0)3.467277(1+

10)1.1034028(-10)1.3632874(+9(10)1.47679073

(10)5.69064463+(10)1.23212959+10)1.0500063(+

)5.80232(10+)2.25299(10+.22446307+91-0.0004773)(











f

 (13) 

 

The natural frequency parameters   is evaluated where 0)( f  (See Fig. 1) . It is obtained in the first 

third modes such as: 2,23.5363147  668.3852414 and 4127.899031  

 
Fig. 1 Natural frequency parameter   for orthotropic square clamped plate under in-plane force where 

yxyyx DHDD  ,25.0 , 0,30  yx NN  , 0GK  

 

Case 2: A rectangular orthotropic clamped plate with ba 5.1  , yxyyx DHDD 2,2   under external in-

plane forces 0,30  yx NN , is studied and the natural frequency parameters   is expressed by: 

 

1230-1024-819-614-

49-2464-2258-

2052-1846-1640-

14-352

3.8470(10)-)1.29932(10-)5.12073(10+)8.32331(10-

10)5.3444022(+2(10)5.21120940+(10)9.41994310+

10)9.4649632(+0)3.701264(1+0)1.056491(1+

0)2.301758(1+40.36416376+68632-0.0001034)(







 f

 (14) 

 

The rail and imaginary values of   is evaluated where 0)( f  (See Fig. 2). It is obtained in the first third 

modes such as: .00806235,76   7928519.571  and 0258.321911  
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Fig. 2 Natural frequency parameter   for orthotropic rectangular clamped plate under in-plane force where 

yxyyx DHDD 2,2  , 0,30  yx NN  ,
 

ba 5.1 , 0GK
 

 

Case 3: An orthotropic clamped rectangular plate with ba 25.1 , yxyyx DHDD 5.0,2   under external 

in-plane forces 40 yx NN and resting on homogenous subgrade with 1GK  is studied and the natural 

frequency parameters   is expressed by: 

1228-1023-818-613-

49-2460-2255-

2049-1843-1638-

14-332-4

)1.41364(10-)3.52729(10- )4.20418(10+0)2.691897(1-

(10)6.49968513+7(10)3.29335339+10)6.3086394(+

10)6.5478937(-10)2.4582382(-0)1.242684(1-

0)2.496750(1+6810.04003995+79(10)0.41227777- )(







 f

 (15) 

 

The rail and imaginary values of   is evaluated where 0)( f  (See Fig. 3) . It is obtained in the first third 

modes such as: .35497010,34 10823812.88 and 8167.704167
 

 
Fig. 3 Natural frequency parameter   for orthotropic rectangular clamped plate under in-plane force where 

yxyyx DHDD 5.0,2  , 40 yx NN  ,
 

ba 25.1 , 1GK
 

 

Case 4: A square orthotropic clamped plate with yxyyx DHDD 5.0,5.0   under external in-plane forces 

40 yx NN and resting on homogenous subgrade with 005GK  is studied and the closed form solution 

of   is expressed by: 
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1226-1021-816-612-

48-2455-2251-

2045-1840-1635-

14-302-4

)2.20548(10-)2.81865(10-0)1.199433(1+0)2.991358(1-

(10)2.75551644+9(10)1.47679073+10)4.1793584(+

10)7.0538636(-0)9.456019(1-0)2.389763(1-

0)1.125277(1+228 0.0216122+(10) 090.63522716- )(







 f

 (16) 

 

Value of   is evaluated where 0)( f  (See Fig. 4) . It is obtained in the first third modes such as: 

,24678014.20  59953663.52 and 9102.899504  

 
Fig. 4 Natural frequency parameter   for orthotropic square clamped plate under in-plane force where 

yxyyx DHDD 5.0,5.0  , 40 yx NN  ,
 
, 005GK  

 

Case 5: A square orthotropic clamped plate with yxyyx DHDD 5.0,5.0   under external in-plane forces 

40 yx NN and resting on homogenous subgrade with 006GK  is studied and the natural frequency 

parameters   is expressed by: 

 

1226-1021-816-612-

48-2455-2251-

2045-1840-1635-

14-302

)2.28491(10-)2.80518(10-0)1.213493(1+0)3.039617(1-

4(10)2.84597966+9(10)1.47679073+10)4.0021435(+

10)7.0583634(-0)9.385457(1-0)2.304975(1 -

0)1.144056(1+ 8920.02824304+2397079-0.0000691)(







 f

 (17) 

 

The natural frequency parameters   is evaluated where 0)( f  (See Fig. 5) . It is obtained in the first 

third modes such as: ,58167634.22 54167766.53  and 0103.384274
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Fig. 5 Natural frequency parameter   for orthotropic square clamped plate under in-plane force where 

yxyyx DHDD 5.0,5.0  , 40 yx NN  ,
 
, 006GK  

 

Case 6: A square orthotropic clamped plate with yxyyx DHDD 5.0,5.0   under external in-plane forces 

40 yx NN and resting on homogenous subgrade with 008GK  is studied and the natural frequency 

parameters   is expressed by: 

 

6940.04323074+

(10) 020.80876549-(10)  2.776795-(10) 1.2414052+

(10) 3.13781518-(10) 73.03129145+(10) 2.447609-

0)1.179591(1+(10) 3.6477138+(10) 7.0667783-

(10) 9.244205-(10) 2.137309-(10) 91.47679073)(

24-1021-816-

612-48-1226-

1430-2251-2045-

18-4016-3524-55







 f

 (18) 

 

The natural frequency parameters   is evaluated where 0)( f  (See Fig. 6). It is obtained in the first third 

modes such as: ,64455117.26 37789497.55  and 1104.347056  

 
Fig. 6 Natural frequency parameter   for orthotropic square clamped plate under in-plane force where 

yxyyx DHDD 5.0,5.0  , 40 yx NN  ,
 
, 008GK
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Case 7: A square orthotropic clamped plate with yxyyx DHDD 5.0,5.0   under external in-plane forces 

40 yx NN and resting on homogenous subgrade with 009GK  is studied and the closed form solution 

of  is expressed by: 

 

1226-

1021-816-612-

48-2455-2251-

2045-1840-1635-

14-302-4

(10) 2.530766-

(10) 2.761860-(10) 1.2552520+(10) 3.18774858-

(10) 13.12617354+(10) 91.47679073+(10) 3.4704989+

(10) 7.0706931-(10) 9.173517-(10) 2.054426-

(10) 1.196358+ 1320.05162468+(10) 446-0.8703376)(









 f

 (19) 

 

The natural frequency parameters   is evaluated where 0)( f  (See Fig. 7) . It is obtained in the first 

third modes such as: ,45930616.28  27353957.56  and 1104.825131
 

 

 
Fig. 7 Natural frequency parameter   for orthotropic square clamped plate under in-plane force where 

yxyyx DHDD 5.0,5.0  , 40 yx NN  ,
 
, 009GK  

 

Case 8: A square orthotropic clamped plate with yxyyx DHDD 5.0,5.0   under external in-plane force 

40 yx NN and resting on homogenous subgrade with 0001GK  is studied and the closed form 

solution of   is expressed by: 

 

1226-1021-816-612-

48-2455-2251-

2045-1840-1635-

14-302-4

)2.61507(10-2.7464(10)-)1.26902(10+0)3.238234(1-

6(10)3.22256190+9(10)1.47679073+10)3.2932839(+

10)7.0744133(-0)9.102791(1-0)1.972185(1-

0)1.212464(1+530.06064387+739(10)-0.9338224)(







 f

 (20) 

 

The natural frequency parameters   is evaluated where 0)( f  (See Fig. 8). It is obtained in the first third 

modes such as: ,16508090.30 15515081.57  and 7105.301035
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Fig. 8 Natural frequency parameter   for orthotropic square clamped plate under in-plane force where 

yxyyx DHDD 5.0,5.0  , 40 yx NN  , 0001GK
 

 

5. CONCLUSION 

A combination between the series expansion and strip method is presented here to derive a closed form 

solutions for eigen values on buckling and vibration of plates subjected to in-plane forces. The plate under 

study is clamped orthotropic rectangular resting on elastic homogenous sub-grade base. On the present 

method the plate domain is divided into a limited number of wide strips (panels) to be solved by the power 

series expansion. A limited number of strips can be applied with increasing the number of terms of the 

expanded series to preserve a high accuracy in the achieved solution. Many cases of orthotropic plates under 

different values of elastic foundation parameters and aspect ratios are investigated by the present technique. 

The achieved method is illustrated and the accuracy is verified via several numerical examples examining 

buckling and vibration of orthotropic plate under the unaxial and biaxial in-plane forces and elastic 

coefficients of subgrade. The study shows a good agreement in comparisons which prove the validity and 

applicability of the present technique. 
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