Vol. 6 Issue 2, June 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed

at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

A KINETIC STUDY OF CATALYSED SOLVOLYSIS OF MALONATE ESTER IN WATER-DIOXAN SOLVENT SYSTEMS.

RENU KUMARI¹ NAMRATA² RAHUL KUMAR³ AND R.T.SINGH⁴

1,2 and 3, -Research Scholars, Dept of Chemistry, V.K.S. University, Ara

4. Professor and Formerly HOD Chemistry and the Dean of the Faculty of Science,

V.K.S. University, Ara

Key words:- Maolnate, Ester, Active methylene group, Synthetic-use, Solvation and desolvation, Enthalpy dominating, Entropy controlled, Iso-kinetic - temperatuse, Sovent-Solute Interaction.

ABSTRACT

Malonate ester contains active methylne grpup and is vey use fu; in Synthesysingh a large number of compounds, Such as barbiturates artificial flavouvings, Vitamin B, and vitamin B6. It is also used as pesf for the up-to-date Societies.

In-order to Highlight-the Solvent effect on its activities, the kinetics of alkali Catolysed hydrolysis of diethyl malonate was Studies in Water-Dioxan reaction media.

Out of the three thermodynamic activation parameters, namely ΔH^* , ΔG^* and ΔS^* , ΔH^* and ΔS^* values of the reaction were found to decrease simultaneously with increase in ΔG^* value and this shows that the dioxan behaves as a entropy controlling solvent.

The iso-kinetic temperature of the reaction is found to be 285, from which it is inferred that there is weak solvent-solute interaction in aquo-dioxan reaction media.

Introduction:

Although a lot of researches on the solvent effect have been carried out on the catalysed solvolysis of simple esters, but a little attention has been paid towards the study of acid or alkali catalysed hydrolysis of dibasic acid esters.

Vol. 6 Issue 2, June 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed

at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Therefore it has been proposed to study the alkali catalysed hydrolysis of diethyl malonate (dibasic ester) in aquo-dioxan media for highlighting the effect of dioxan on the activeness of methylene group present in the ester.

Experimental:

The kinetic of alkali catalysed hydrolysis of diethyl malonate was studied as usual^{1,2} at five different temperatures renging from 20 to 40°C (at interval of 5°C) in aquo-dioxan media whose composition were varied from 10% to 50% (v/v) at interval of 10% in each case.

The reaction was found to obey second order kinetic equation and the avaluated values of specific rate constants of the reactoin have been tabulated in Table-I.

Table- I Specific rate constant values of Alkali catalysed hydrolysis of diethyl malonate in aquo-dioxan media Kx 10² in lit. mol⁻¹ min⁻¹

Temp	% of Dioxan (v/v)								
in °C	10%	20%	30%	40%	50%				
20 ° C	49.1	42.9	37.2	34.3	32.2				
25 °C	69.5	61.8	49.0	45.9	40.8				
30 °C	111.9	87.5	78.3	63.7	56.6				
35 °C	150.7	127.1	110.2	90.6	73.3				
40 °C	205.1	178.2	149.6	116.7	97.5				

From the slopes of the Arrhenius plots of log k dersus 1/T (their values recorded in Table - II) the iso composition activation energy (E_C) values of the reaction for different concentration of dioxan were evaluated which are enlisted in Table-III.

Vol. 6 Issue 2, June 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Table - II

Variation of log k values with 1/T for alkali catalysed hydrolysis of diethyl malonate in aquo-Dioxan media.

Temparature	$10^{3}/{\rm T}$	2 + log k values							
	10 / 1	10%	20%	30%	40%	50%			
20	3.413	1.691	1.632	1.571	1.535	1.508			
25	3.356	1.842	1.791	1.690	1.662	1.611			
30	3.300	2.049	1.942	1.894	1.804	1.753			
35	3.247	2.178	2.104	2.042	1.957	1.865			
40	3.195	2.312	2.251	2.175	2.067	1.989			

Similarly, from the slopes of Arrhenius Plots of log k_D values (log k_D obtained from the interpolation of plots of log k values verses D values of the reaction media as recorded in Table - IV and interpolated log K_D values at desired D values of the reaction media are inserted in Table - V) verses 1/T, the E_D values were evaluated and are placed in Table - VI. The thermodynamic activation parameters were evaluated by using Wynne-Jones and Eyring³ equation and are depicted in Table - VII.

Table - III

Evaluated values of Iso-composition Activation Energy (E_C or E_{exp}) for alkali catalysed hydrolysis of Diethyl malonate in aquo-Dioxan media

% of Dioxan	10%	20%	30%	40%	50%
E_{C} or E_{Exp} value in kJ/mol	58.22	55.61	54.96	48.45	42.76

Vol. 6 Issue 2, June 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed

at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Discussion on the Resultss:

Effect of solvent on the Activation energy (Iso-omposition) of the reaction:

From the slopes of the Arrhenius plots of $\log k$ versus 1/T,the iso-composition activation energy (E_C) of the reaction were evaluated and have been inserted in Table - IV.

Table - IV

 $\log k_D$ values obtained from interpolation at different values of D for alkli catalysed hydrolysis of diethyl malonate in aquo-Dioxan media

	2	$2 + \log k$	2 + log k _D values							
Temp.	$10^3/T$	34	40	46	52	58	64	70		
20	3.413	1.494	1.525	1.556	1.590	1.621	1.654	1.686		
25	3.356	1.598	1.643	1.689	1.734	1.779	1.825	1.870		
30	3.300	1.732	1.792	1.853	1.914	1.975	2.036	2.098		
35	3.247	1.901	1.957	2.014	2.070	2.127	2.185	2.241		

From Table - IV, it is observed that the values of Iso-composition activation energy go on depleting from 58.22 kJ/mol to 42.76 kJ/mol with gradual addition of the organic content (dioxan) of the reaction media. The decrease in the values of Iso-composition activation energy may be caused by either of the following facts:

- (i) The initial state is desolvated and the transition state is solvated,
- (ii) The initial state is less solvated than the transition state, and
- (ii) The transition state is less desolvated than the initial state.

Vol. 6 Issue 2, June 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Table - V $Iso-dielectric \ Activation \ Energy \ (E_D) \ values \ for \ alkali \ catalysed \ hydrolysis$ $of \ Diethyl \ malonate \ in \ aquo-Dioxan \ media.$

D values	D=34	D=40	D=46	D=52	D=58	D=64	D=70
E _D values in	52.19	54.56	56.05	58.21	60.40	62.12	64.07
kJ/mol							

Out of these three factors, the first one is expected to be operative in this case which gets support from the fact that the values of entrophy of activation go on depleting with increasing the concentration of dioxan in the reaction media as recorded in Table - VII. This gives information of the fact that disorderness in the reaction media decreases. This conclusion is found in support of the earlier findings of Singh & Singh et al.⁴ and Rai & Singh et al.⁵. Recently Akanksha & Singh et al.⁶, Kumar & Singh et al.⁷ and R. T. Singh⁸ have also interpreted similar conclusions for depletion in Iso-composition activation energy of solvolysis reactions.

Effect of aquo-dioxan reaction media on the Iso-dielectric activation energy (E_D) of the Reaction :

Plots of log k versus D and plots of log K_D versus 1/T. On perusal of the data of Table -VI, it is apparant that E_D values of the reaction are found to increase with D values of the reaction media. The E_D values is 52.19 kJ/mol at dielectric constant value D=34 and enhances to 64.07 kJ/mol at D=70. As dielectric constant value of aquo-dioxan media inceases with gradual addition of dioxan in the reaction media as shown in Table - IV, so in another way, it may be concluded that like Iso-composition activation energy (E_C), the Iso-

Vol. 6 Issue 2, June 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed

at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

dielectric activation energy (E_D) of the alkali catalysed hydrolysis of diethyl malonate are also decreasing with gradual addition of (vol%) of the organic cosolvent (dioxan) in the reaction media. From above interpretation about E_C and E_D , it may be inferred that they $(E_C$ or $E_D)$ are complimentary to each other. Similar observation and inferences regarding solvent effect on E_D values of the reaction have also been reported earlier by Priyanka & Singh et al. and recently by Choubey & Singh et al. 10

Table -VI

Variation of log k with the Dielectric constant 'D' of aquo-Dioxan for Alkali catalysed hydrolysis of Diethyl malonate in aquo-Dioxan media at different temperatures.

% of				2 + log k valu	es				
Dioxan		20°C	2	25°C	30)°	35°C		
(v/v)	D	2 + log k	D	2 + log k	D	2 + log k	D	2+log k	
10	68.3	1.691	66.4	1.842	65.3	2.049	63.3	2.178	
20	59.8	1.632	58.7	1.791	57.1	1.942	48.5	2.104	
30	52.6	1.571	51.3	1.690	49.9	1.894	40.0	2.042	
40	43.6	1.535	42.3	1.662	41.1	1.804	40.0	1.957	
50	34.7	1.508	33.7	1.611	32.7	1.753	31.6	1.865	

Effect of solvent on Thermodynamic Activation Parameters of the Reaction:

The consolidated values of ΔH^* , ΔG^* and ΔS^* have been synchronised in Table - VII and their variation with mol % of dioxan. From Table - VII, which includes the values of the three thermodynamic activation parameters i.e ΔH^* , ΔS^* and ΔG^* , it is observed that values of free energy of activation ΔG^* enhance from 84.29 kJ/mol to 86.01 kJ/mol with gradual addition of dioxan from 10 to 50% (v/v) in the reaction media at 30°C. Though the enhancement in ΔG^* values is not very high, but, is very much liable to be taken into

Vol. 6 Issue 2, June 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed

at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

consideration. Similar variations in ΔG^* values have also been reported earlier by Tommila¹¹ and Dubey & Singh et al.¹². From the plots of ΔG^* values with mol % of dioxan a smooth curve is obtained which is indicative of solvation or desolvation of reactants as explained by Elsemongy et al.¹³ While variation in ΔH^* and ΔS^* are concerned, it is clear from Table VII, that both of them decrease with increasing mol % of dioxan in the reaction media. However, from Table- VII, it is interesting to observe that out of all the three thermodynamic activation parameters of the recation, namely ΔH^* , ΔG^* and ΔS^* , there is depletion in ΔH^* and ΔS^* values with simultaneous increase in ΔG^* with gradual addition of dioxan in the reaction media.

According to the relation

$$\Delta G^* = \Delta H^* - T\Delta S^*$$

it can easily be concluded that the simultaneous enhancement in ΔG^* values with decrease in ΔH^* and ΔS^* values is only possible when the extent of depletion in ΔS^* is greater than that of ΔH^* . The regular depletion to the greater extent in ΔS^* values in comparison to the ΔH^* values clearly indicates that the alkali catalysed solvolysis of diethyl malonate in aquo-dioxan media is enthalpy domination and the organic co-solvent dioxan plays the role of enropy controlling solvent.

Moreover, the non-linear variation (depletion) in ΔH^* and ΔS^* values with gradual addition of dioxan in the reaction media gives information of the fact that the specific solvation is taking place in aquo-dioxan solvent system which is in accordance with the observation of Tommila et al. ¹¹. Similar findings regarding effect of solvent on the thermodynamic activation parameters have also been reported earlier by Singh & Singh et al. ¹⁴, Singh & Priyanka et al. ¹⁵ and recently by Shrma & Singh et al. ¹⁶.

Evaluation of Iso-Kinetic temperature of the Reaction and Solvent solute Interaction in aquo-dioxan media:

With the help of Iso-kinetic relationship developed by Barclay and Butler¹⁷, the value of the Iso-kinetic temperature was evaluated.

The Barclay and Butler equation is:

Vol. 6 Issue 2, June 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$\delta m (\Delta H^*) = \beta \delta m (\Delta S^*)$$

It is a relationship between enthalpy and entropy of activation and ' β ' is called Isokinetic temperature which is also called Leffler-Grunwald¹⁸ solvent stabilizer operator.

In the light of the above mentioned relationship, the value of Iso-kinetic temperature of the reaction was evaluated from the slope of the plots of ΔH^* against ΔS^* from their values as recorded in Table - VII and comesto 285.0 In the light of Leffler's¹⁹ guidelines, it is concluded from the numerical value of the slope (which is less than 300), that there is considerable change in the structure of the reactant or in the solvent or in both the reactant and the silvent due to weak but appreciable interaction between solvent and solute present in the reaction media (aquo-dioxan media).

Table-VII Thermodynamic Activation parameters for Alkali catalysed hydrolysis of Diethyl malonate in aquo-Dioxan Media.

$\Delta H^{f *}$	and	∆G*	in	kJ,	/mol,	, ∆S*	in	J/K/	mol
------------------	-----	-----	----	-----	-------	-------	----	------	-----

% of	of ΔH^* in 20°			25°C		30°C		35°C		40°C	
Dioxan (v/v)	kJ/mol	ΔG^*	- ΔS*	ΔG^*	- ΔS*	ΔG^*	- ΔS*	ΔG^*	Δ-S*	ΔG^*	Δ- S*
10%	55.90	83.44	93.99	84.04	94.43	84.29	93.71	84.96	94.37	85.58	94.83
20%	53.83	83.77	102.17	84.33	102.34	84.91	102.58	85.40	102.49	85.95	102.61
30%	52.07	84.11	109.33	84.91	110.17	85.19	109.30	85.76	109.38	86.40	109.67
40%	45.93	84.31	131.00	85.06	131.33	85.72	131.31	86.27	130.97	87.05	131.37
50%	40.05	84.46	151.57	85.36	152.03	86.01	151.67	86.81	151.18	87.52	151.64

Similar findings and inferences regarding solvent-solute interaction have also been recorded earlier by Singh & Singh et al.²⁰, Dubey & Singh et al.²¹ and recently by Sinha & Singh et al.²² Sushma & Singh et. al.²³, and Sushma- abhay and Singh et al.²⁴.

Vol. 6 Issue 2, June 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

References:

1. Singh, Lallan, Singh, Guta, A.K., : React. Kinet. Catal. Lett., 24,

Singh, R. T., Verma, D.K. and No. (1-2), 161-165

Jha, R. C.

2. Kumar, S., Kumari, S., : NIRJ Sci. 19, 49-60, 2015 (Dec.)

Kumar, V. and Singh, R.T.

3. Wynne-Jones W.F.K. : J. Chem. Phys., 3, 492, 1953

and Eyring, H.

4. Singh, K. K. and Singh, R. T. : NIRJ Sci., 6, 115-120,2011

5. Singh, A.K., Rai, C. l., : ARJ Phy. Sci. 13, No. (1-2),

Singh, Y.P. and Singh, R.T. 157-163, 2010

6. Akanksha kumari, R. Kumari, : ARJ Phy. Sci. 17, No. (1-2),

and Singh, R.T. 105-116, 2014

7. Kumar, R., Kamal, K. K., : NIRJ Sci. 17, 55-68, 2015

Pandot, L. k. and Singh, R. T.

8. Singh, R. T. : ARJ Phy. Sci. 18, No. (1-2),

105-116, 2015

9. Priyanka, N., Nazia, S., : ARJ Phy. Sci. 17, No. (1-2),

Kumar, V. and Singh, R. T. 117-128, 2014

10. Choubey, R. K., Dubey, R. B., : NIRJ Sci., 21, 87-100, 2016 (Sept.)

Kumar, N. and Singh, R. J.

11. Tommila, E. and : Soumen Kemi., 26B, 79, 1953

Mevikallio, E.

12. Dubey, R, Singh, A. K., : NIRJ Sci., 21, 87-100, 2016 (Sept.)

Singh, B.K. and Singh, R.T.

13. Elsemongy, M.M., : Z. Physik Chem. (Neue Folge), 94,

Vol. 6 Issue 2, June 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed

at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Elamayem, M.S. and

69, 1975

Moussa, M. N. H.

Vol. 6 Issue 2, june 2017,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

14. Singh, R. T., Singh, V. K., : ARJ Phy. Sci. 17, No. (1-2),

Kumar, A. and Singh, R. I. 141-152, 2014

15. Singh, R. T., Priyanka, K., : NIRJ Sci., 16, 15-24, 2014

Singh, S. and Singh, R. K.

16. Sharma, S., Kumari, S., : NIRJ Sci., 23, 99-104, 2017 (March)

Gautam, S. and Singh, R. T.

17. Barclay, J. A. and Butler, J.A. V. Trans Faraday Soc., 34, 144. 1938

18. Leffler, J. E. and Grunwald, E. : "Rates and Equilibrium in Organic

Reactions", John Woley & Sons,

Inc. New York, 1963

19. Leffer, J. E. : J. Org. Chem., 20, 1201, 1955

20. Singh, R., Kumari, S., : ARJ Phys. Sci., 17, Nos. (1-2),

Ranjan, N. and Singh, R. T. 173-185, 2014

21. Dubey, R. B., Gautam, S., : NIRJ Sci., 18, 51-62, 2015

Singh, P. and Singh, R. T.

22. Sinha, P. C. K., Rai, C. L., : NIRJ Sci., 24, 39-53, 2017 (Sept.)

Kumar, S. and Singh, R. T.

23. K. Sushma, Ranjan, R. K. : IJEM 7, No. (2), 147-162,

and Singh, R. T. 2018 (Feb.)

24. K. Sushma, Abhay.A.Aryan : Journal of Information and

and Singh R T computational Science (JICS)

10 No (5), 714-813, 2020