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Abstract—Considering circular trajectories and using Shirokov’s technique based on geodesic 
deviation, frequencies of 𝜃- vibrations and 𝑟 or (𝜙) – vibrations of a particle moving along circular 
geodesic in the Reissner-Nordstrom space-time are obtained. Furthermore, effect of charge on the 
vibrations of the test particles instead of helping the matter to curve the space-time more, decurves 
the space-time which means that the nature of gravitational field due to the matter and charge matter 
may be of different type. Our investigation conclude that, the vibrations of the test particle in the 
 𝜉1 − 𝜉3 -plane are elliptical and along  𝜉2 harmonically rectilinear. 

Keywords—Shirokov’s technique, geodesic deviation Effect of charge,  𝜃- vibrations,  𝑟 or (𝜙) – 
vibrations, Theory of Relativity, gravitational field. 

——————————————————— 

 

1 Introduction 

INSTEIN’Stheory of gravitation, though it has formal beauty and mathematical elegance has been accepted as 

physical theory on the basis of experimental verifications of the observable effects referred as test of general 

theory of relativity GTR. Of all the tests ―one new effect of Einstein’s theory of gravitation‖, known as 

Shirokov’s effect is a new test. 

According to Shirokov (1973), if a test particle moving in the Schwarzschild field along a circular orbit is put 

to vibrate then the periods of  𝜃- vibrations and  𝑟 or (𝜙) – vibrations are 

𝑇𝜃 =  
2𝜋

𝛺
=  𝑇0   1 − 

3𝑚

2𝑟
 and  

𝑇𝑟 𝑜𝑟 𝑇𝜙 =  
2𝜋

𝜔
=  𝑇0   1 +  

3𝑚

2𝑟
  

resulting in     

𝛥𝑇𝑆𝑐ℎ𝑙′𝑑 = 𝑇𝜃 − 𝑇𝑟 𝑜𝑟 𝑇𝜙 =  𝑇0 − 3𝑚/𝑟   

(where𝑇0 = 2𝜋  𝑟3 𝑚  1/2 is the Newtonian period of a test particle in the circular orbit of radius  𝑟 ) 

showing that 𝜃- vibrations lie behind  𝑟 or (𝜙) – vibrations by  (3𝑚 𝑟 )𝑇0  as a new effect of Einstein’s theory of 

gravitation. 

Further in his study by deriving 4-deviation vector  𝜉𝑖 , shown that in the  𝜉1 − 𝜉3 -plane the vibrations of the 

test particle are elliptical and along  𝜉2 harmonically rectilinear. 

In this paper we have applied Shirokov’s technique to study this effect in the electrogravitational field. Our 

investigations conclude that, the vibrations of the test particle in the  𝜉1 − 𝜉3 -plane are elliptical and along  𝜉2 

harmonically rectilinear. 

In section 2, following Howes[2], expressions for the frequencies of vibrations of the test particle are derived in 

the R-N field. In section 3,  4-deviation vector 𝜉𝑖  is obtained and thereby effect of the charge on the vibrating 

system is discussed. 

E 

mailto:kalpanapawar31@rediffmail.com
mailto:narendra.katre@rediffmail.com
mailto:satishrathod474@gmail.com


                   IJESM               Volume 5, Issue 2                          ISSN: 2320-0294 

 
 

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Engineering, Science and Mathematics  

                                                                              http://www.ijesm.co.in Page 146 
 

 

Jun. 16 

2   Frequencies Of Vibrations  

In the general theory of relativity, the equation of deviation from the geodesic [1] is 

  
𝑑2𝜉 𝑖

𝑑𝑠2  + 2 𝛤𝑗𝑘
𝑖 𝑢𝑗 𝑑𝜉𝑘

𝑑𝑠
 +  

𝜕𝛤𝑗𝑘
𝑖

𝜕𝑥 𝑙 𝑢
𝑗𝑢𝑘𝜉𝑙 = 0 ,                (1) 

where  𝜉𝑖  is the infinitesimal 4-vector giving the deviation from the basic geodesic, 𝑢𝑖 = 𝑑𝑥𝑖/𝑑𝑠  is the 4-

velocity vector tangential to the basic geodesic and  𝛤𝑗𝑘
𝑖  are Christoffel symbols defined as 

  𝛤𝑗𝑘
𝑖 =  

1

2
𝑔𝑙𝑖  

𝜕𝑔𝑙𝑗

𝜕𝑥𝑘  +  
𝜕𝑔𝑙𝑘

𝜕𝑥 𝑗  −  
𝜕𝑔𝑗𝑘

𝜕𝑥 𝑙   . 

We suppose that the basic geodesic is a circular trajectory with radius 𝑟 = constant in the plane 𝜃 = 𝜋/2  in the 

Reissner-Nordstrom (R-N) field, 

  𝑑𝑠2 = − 1 −
2𝑚

𝑟
+ 

𝑒2

𝑟2 
−1

𝑑𝑟2 − 𝑟2 𝑑𝜃2 + 𝑠𝑖𝑛2𝜃 𝑑𝜙2 +  1 −
2𝑚

𝑟
+ 

𝑒2

𝑟2 𝑑𝑡2   (2) 

where𝑟 =  𝑥1,   𝜃 =  𝑥2,   𝜙 =  𝑥3,   𝑡 =  𝑥4 . 

For the field (2), metric tensors are 

  𝑔11 = − 1 −
2𝑚

𝑟
+

𝑒2

𝑟2 
−1

,   𝑔22 = −𝑟2,    𝑔33 = −𝑟2𝑠𝑖𝑛2𝜃 ,   

  𝑔44 =  1 −
2𝑚

𝑟
+

𝑒2

𝑟2  ,          𝑔𝑖𝑗 = 0  for  𝑖 ≠ 𝑗      (3) 

and the non-vanishing components of the Christoffel symbols are 

  𝛤11
1 = − 

𝑚

𝑟2 − 
𝑒2

𝑟3  1 −
2𝑚

𝑟
+

𝑒2

𝑟2 
−1

,  

𝛤22
1 = − 𝑟  1 −

2𝑚

𝑟
+

𝑒2

𝑟2 ,  𝛤33
1 = −𝑟 𝑠𝑖𝑛2𝜃  1 −

2𝑚

𝑟
+

𝑒2

𝑟2  , 

𝛤44
1 =   

𝑚

𝑟2 − 
𝑒2

𝑟3  1 − 
2𝑚

𝑟
 +  

𝑒2

𝑟2 , 𝛤21
2 =  

1

𝑟
  =   𝛤13

3  ,   

𝛤33
2 =  − 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 ,        𝛤23

3 =  𝑐𝑜𝑡 𝜃 ,   

𝛤41
4 =  

𝑚

𝑟2 − 
𝑒2

𝑟3  1 − 
2𝑚

𝑟
 +  

𝑒2

𝑟2 
−1

 .       (4) 

Following Howes[2],  if the basic geodesics are circular in the axisymmetric stationary field, 𝜃-disturbances are 

independent of  𝑟, 𝜙, and  𝑡-perturbations. 

Therefore for  𝑖 = 2, equation (1) assumes the form 

  
𝑑2𝜉2

𝑑𝑠2  +
𝜕𝛤𝑗𝑘

2

𝜕𝑥2 𝑢𝑗𝑢𝑘𝜉2 = 0( j, k = 1, 2, 3, 4 )      (5) 

If we suppose that  

𝜉2 =  𝜉0
2𝑒𝑖 𝛺 𝑠           (6) 

( 𝜉0
2 is the amplitude of 𝜃-vibrations) then from (5), we obtain 

  𝛺2 =  𝛤𝑗𝑘  ,2
2 𝑢𝑗𝑢𝑘  ,          (7) 

where comma in the Christoffel symbol denotes the partial differentiation and  𝛺 is the frequency of  𝜃-

vibrations. 

For  𝑖 =  1, 3, 4 , from (1), we get 

  
𝑑2𝜉1

𝑑𝑠2  + 2 𝛤𝑗3
1𝑢𝑗 𝑑𝜉3

𝑑𝑠
 +  2 𝛤𝑗4

1𝑢𝑗 𝑑𝜉4

𝑑𝑠
   +   𝛤𝑗𝑘  ,1

1 𝑢𝑗𝑢𝑘𝜉1 = 0, 

  
𝑑2𝜉3

𝑑𝑠2  + 2 𝛤𝑗1
3 𝑑𝜉1

𝑑𝑠
𝑢𝑗 = 0 ,   and  

  
𝑑2𝜉4

𝑑𝑠2  + 2 𝛤𝑗1
4 𝑑𝜉1

𝑑𝑠
𝑢𝑗 = 0        (8) 

Further, if we suppose that  
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𝜉𝑗 =  𝜉0
𝑗
𝑒𝑖 𝜔 𝑠 ,    ( 𝑗 = 1, 3, 4 )          (9)         

( 𝜉0
𝑗
 is the amplitude of  𝑟, 𝜙  and  𝑡-vibrations), then from (8), we get 

 𝛤𝑗𝑘  ,1
1 𝑢𝑗𝑢𝑘 − 𝜔2 𝜉0

1  + 2 𝑖 𝜔 𝛤𝑗3
1𝑢𝑗𝜉0

3 + 2 𝑖 𝜔 𝛤𝑗4
1𝑢𝑗𝜉0

4 = 0 ,  

  2 𝑖 𝜔 𝛤𝑗1
3𝑢𝑗𝜉0

1 − 𝜔2𝜉0
3  = 0 ,   and   

  2 𝑖 𝜔 𝛤𝑗1
4𝑢𝑗𝜉0

1  −  𝜔2𝜉0
4 = 0         (10) 

where𝜔 is the frequency of 𝑟, 𝜙 and  𝑡-vibrations, all the Christoffel symbols and their derivatives are evaluated 

at 𝜃 = 𝜋/2. 

For non-trivial solution of (10), we equate the determinant of coefficients to zero and obtain 

  𝜔2 =  𝑢𝑗𝑢𝑘𝛤𝑗𝑘  ,1
1 −  4 𝑢𝑗𝑢𝑘𝛤𝑗1

3𝛤𝑘3
1  −  4 𝑢𝑗𝑢𝑘𝛤𝑗1

4𝛤𝑘4
1  

or 

  𝜔2 =  𝛤33 ,1
1 −  4 𝛤31

3 𝛤33
1   𝑢3 2 +  𝛤44 ,1

1 −  4 𝛤14
4 𝛤44

1   𝑢4 2     (11) 

To determine 𝑢3, consider geodesic equation 

𝑑𝑢 𝑖

𝑑𝑠
+ 𝛤𝑗𝑘

𝑖 𝑢𝑗𝑢𝑘 = 0,  (𝑖, 𝑗, 𝑘 = 1, 2, 3, 4 )        (12) 

in the Einstein's theory of gravitation. 

For circular orbits in the equatorial plane, from (12) we find that 

𝑑𝑡

𝑑𝜙
=  

𝑢4

𝑢3  =    
−𝛤33

1

𝛤44
1  

1

2
 ,            (13) 

which provides the angular velocity of the test particle as seen from the infinity. 

Using (4) in (13), we get 

 

   𝑢4 2  =   
𝑟2

 
𝑚

𝑟
 − 

𝑒2

𝑟2 
 𝑢3 2.            (14) 

For equatorial circular orbit in the field (2) using (13) we get 

 𝑢3 2  =    
𝑚

𝑟3  1 − 
𝑒2

𝑚 𝑟
  1 − 

3𝑚

𝑟
 +  

2 𝑒2

𝑟2  
−1

     (15) 

The corresponding frequencies of  𝜃-vibrations and 𝑟 (or 𝜙)-vibrations in (7) and (11) simplify to 

  𝛺2  =   𝑢3 2           (16) 

& 

𝜔2  =   𝑢3 2   1 − 
6𝑚

𝑟
 +  

3 𝑒2

𝑟2 + 
𝑒2

𝑚 𝑟
 +  

𝑒4

𝑚2𝑟2  + 𝑂(𝜂)2 
1

2     (17) 

 

respectively, in which  
𝑚

𝑟
 =  

𝑒

𝑟
= 𝑂(𝜂)  ,  𝜂 is small. 

3   Periods Of Vibrations  

The periods of  𝜃- vibrations and  𝑟 or (𝜙) – vibrations are 

  𝑇𝜃 =  
2𝜋

𝛺
=  𝑇0 ( 1 − 

3𝑚

2𝑟
−

9 𝑚2

8 𝑟2 + 
𝑒2

2 𝑚 𝑟
+ 

𝑒2

3 𝑟2 + 
3 𝑒4

8 𝑚2𝑟2  + 𝑂(𝜂)2 
1

2 )    (18) 

and 

𝑇𝑟 𝑜𝑟 𝑇𝜙 =  
2𝜋

𝜔
=  𝑇0   1 + 

3𝑚

2𝑟
+ 

63 𝑚2

8 𝑟2 − 
7 e2

2 r2 + 𝑂(𝜂)2 
1

2     (19) 

where𝑇0 = 2𝜋  𝑟3 𝑚  1/2 is the Newtonian period of a test particle in the circular orbit of radius  r. The 

difference ∆𝑇𝑅𝑁   between the periods of  θ- vibrations and  r or (ϕ) – vibrations is 

  ∆𝑇𝑅𝑁  =  −
3 𝑚

𝑟
+ 

𝑒2

2 𝑚 𝑟
 𝑇0        (20) 

to the 1 ½  order  approximation.  

For  𝑒 = 0,  (20) reduces to   
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  𝛥𝑇𝑆𝑐ℎ𝑙′𝑑 = −
3 𝑚

𝑟
 𝑇0 − 𝑇𝑟  ,         (21) 

the result obtained by Shirokov (1973) as a new effect of  

Einstein’s theory of gravitation. 

From (20) and (21) we find a relation between shift in periods of  𝜃- vibrations and  𝑟 or(𝜙)  – vibrations in 

R-N field and Schwarzschild field as  

  ∆𝑇𝑅𝑁  =  𝛥𝑇𝑆𝑐ℎ𝑙′𝑑  1 − 
𝑒2

6 𝑚2         (22) 

which is obtained by KalpanaPawar& G. D. Rathod[5]. 

4   Infinitesimal Deviation Four-Vector 

Using (4),  (9) in (8) and then simplifying, we get 

  𝜉0
3 = 2  1 + 

3𝑚

𝑟
− 

𝑒2

2𝑚 𝑟
 𝑒𝑖 

𝜋

2𝜉0
1 ,         (23) 

  𝜉0
4 = 2  

𝑚

𝑟
 

1

2
𝑒𝑖 

𝜋

2𝜉0
1          (24) 

Now the equations (6) and (9) in real quantities can be expressed as 

  𝜉1 =  𝜉0
1 𝑠𝑖𝑛𝜔 𝑠 ,  𝜉2 =  𝜉0

2 𝑠𝑖𝑛 𝛺 𝑠 , 

  𝜉3 =  2  1 + 
3𝑚

𝑟
− 

𝑒2

2𝑚 𝑟
 𝜉0

1 𝑐𝑜𝑠 𝜔 𝑠and 𝜉4 =  2  
𝑚

𝑟
 

1

2
𝜉0

1 𝑐𝑜𝑠 𝜔 𝑠 .   (25) 

4   Conclusion 

The relation (22) between shift in periods of  𝜃- vibrations and  𝑟 or(𝜙)  – vibrations in R-N field and 

Schwarzschild field is analogous to the relation,  

  𝛿𝜙𝑅𝑁 =  𝛿𝜙𝑆𝑐ℎ𝑙′𝑑  1 − 
𝑒2

6 𝑚2  

between perihelic shift in R-N field and Schwarzschild field obtained by H. J. Treder, H. H. V. Borzeszkowski, 

A. Van Der Merwe, W. Y. Yourgrau[3]. 

According to G. D. Rathod and T. M. Karade[4], 𝛿𝜙𝑅𝑁 <  𝛿𝜙𝑆𝑐ℎ𝑙′𝑑   shows that charge on the gravitating 

particle instead of helping the matter to curve the space-time more, decurves the space-time, which means that 

the nature of the gravitational fields due to the matter and charged matter may be of different type.  

In our case from (22), we find a similar relation,  ∆𝑇𝑅𝑁 <  𝛥𝑇𝑆𝑐ℎ𝑙′𝑑  ,which supports the conclusion of G. D. 

Rathod and T. M. Karade[4], and K. Pawar and G. D. Rathod[5].  

From (25) it is clear that, in the  ξ1 − ξ3 -plane the vibrations of the test particle are elliptical and along  ξ2 

harmonically rectilinear as in the Schl’d field. 

For e = 0, one can recover all the results of  Shirokov (1973). Moreover, we observe that minor axis of elliptical 

path in the  ξ1 − ξ3 -plane gets contracted as an effect of charge. 
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